Skip to main content
Log in

Research on Real-time Detection of Stacked Objects Based on Deep Learning

  • Review Paper
  • Published:
Journal of Intelligent & Robotic Systems Aims and scope Submit manuscript

Abstract

Deep Learning has garnered significant attention in the field of object detection and is widely used in both industry and everyday life. The objective of this study is to investigate the applicability and targeted improvements of Deep Learning-based object detection in complex stacked environments. We analyzed the limitations in practical applications under such conditions, pinpointed the specific problems, and proposed corresponding improvement strategies. First, the study provided an overview of recent advancements in mainstream one-stage object detection algorithms, which included Anchor-based, Anchor-free, and Transformer-based architectures. The high real-time performance of these algorithms holds particular significance in practical engineering applications. It then looked at relevant technologies in three emerging research areas: Parts Recognition, Intelligent Driving, and Agricultural Picking. The study summarized existing limitations in real-time object detection within complex stacked environments and provided a comprehensive analysis of prevalent improvement strategies such as multi-level feature fusion, knowledge distillation, and hyperparameter optimization. Finally, after analyzing the performance of recent advanced one-stage algorithms on official datasets, this paper conducted empirical tests on a self-constructed industrial stacked dataset with algorithms of different structure and analyzed the experimental results in detail. A comprehensive analysis shows that Deep Learning-based object detection algorithms offer extensive applicability in complex stacked environments. In addressing diverse target sizes, overlapping occlusions, real-time constraints, and the need for lightweight solutions in complex stacked environments, each improvement strategy has its own advantages and limitations. Selecting and integrating appropriate enhancement strategies is critical and typically requires holistic evaluation, tailored to specific application contexts and challenges.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

All data generated or analyzed during this study are included in this published article. The source codes used during the research are available from the corresponding author on reasonable request.

Code Availability

The custom code used during the current study is available from the corresponding author on reasonable request.

References

  1. Viola, P.A., Jones, M.J.: Rapid object detection using a boosted cascade of simple features. In: Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001, vol. 1 (2001)

  2. Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 886–8931 (2005)

  3. Canny, J.F.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI 8, 679–698 (1986)

  4. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60, 91–110 (2004)

    Article  Google Scholar 

  5. Bay, H., Tuytelaars, T., Gool, L.V.: Surf: Speeded up robust features. In: European Conference on Computer Vision (2006). https://api.semanticscholar.org/CorpusID:461853

  6. Zhao, K., Wang, Y., Zuo, Y., Zhang, C.: Palletizing robot positioning bolt detection based on improved yolo-v3. J. Intell. Robot. Syst. 104 (2022)

  7. Liu, H.-Q., Li, D., Jiang, B., Zhou, J., Wei, T., Yao, X.: Mgbm-yolo: a faster light-weight object detection model for robotic grasping of bolster spring based on image-based visual servoing. J. Intell. Robot. Syst. 104, 1–17 (2022)

    Article  Google Scholar 

  8. Tao, H., Qiu, J., Chen, Y., Stojanovic, V., Cheng, L.: Unsupervised cross-domain rolling bearing fault diagnosis based on time-frequency information fusion. J. Frankl. Inst. 360, 1454–1477 (2022)

    Article  Google Scholar 

  9. Zhuang, Z., Tao, H., Chen, Y., Stojanovic, V., Paszke, W.: An optimal iterative learning control approach for linear systems with nonuniform trial lengths under input constraints. IEEE Trans. Syst. Man Cybern. Syst. 53, 3461–3473 (2023)

    Article  Google Scholar 

  10. Sun, X., Liu, T., Yu, X., Pang, B.: Unmanned surface vessel visual object detection under all-weather conditions with optimized feature fusion network in yolov4. J. Intell. Robot. Syst. 103 (2021)

  11. Sharma, V., Mir, R.N.: A comprehensive and systematic look up into deep learning based object detection techniques: a review. Comput. Sci. Rev. 38, 100301 (2020)

    Article  MathSciNet  Google Scholar 

  12. Gupta, A., Anpalagan, A., Guan, L., Khwaja, A.S.: Deep learning for object detection and scene perception in self-driving cars: survey, challenges, and open issues. Array 10, 100057 (2021)

    Article  Google Scholar 

  13. Kamath, V., Renuka, A.: Deep learning based object detection for resource constrained devices: systematic review, future trends and challenges ahead. Neurocomput. 531, 34–60 (2023)

    Article  Google Scholar 

  14. Chen, G., Wang, H., Chen, K., Li, Z., Song, Z., Liu, Y., Chen, W., Knoll, A.: A survey of the four pillars for small object detection: multiscale representation, contextual information, super-resolution, and region proposal. IEEE Trans. Syst. Man Cybern. Syst. 52, 936–953 (2022)

    Article  Google Scholar 

  15. Tong, K., Wu, Y.: Deep learning-based detection from the perspective of small or tiny objects: a survey. Image Vis. Comput. 123 (2022). https://doi.org/10.1016/j.imavis.2022.104471

  16. Chahal, K.S., Dey, K.: A survey of modern object detection literature using deep learning (2018). arXiv:1808.07256

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556

  18. Noh, S.-H.: Analysis of gradient vanishing of rnns and performance comparison. Inf. 12, 442 (2021)

    Google Scholar 

  19. Canziani, A., Paszke, A., Culurciello, E.: An analysis of deep neural network models for practical applications (2016). arXiv:1605.07678

  20. Broy, M.: Software engineering–from auxiliary to key technologies. In: Broy, M., Denert, E. (eds.) Software Pioneers. Springer, New York, pp. 10–13 (1992)

  21. Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Boston, pp. 1–9. https://doi.org/10.1109/cvpr.2015.7298594 (2015)

  22. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE Comp Soc; Comp Vis Fdn, Seattle, pp. 779–788. https://doi.org/10.1109/CVPR.2016.91 (2016)

  23. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., Andreetto, M., Adam, H.: Mobilenets: efficient convolutional neural networks for mobile vision applications (2017). arXiv:1704.04861

  24. Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., Vasudevan, V., Le, Q.V., Adam, H.: Searching for mobilenetv3. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV 2019). IEEE; IEEE Comp Soc; CVF, Seoul, pp. 1314–1324. https://doi.org/10.1109/ICCV.2019.00140 (2019)

  25. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words: transformers for image recognition at scale (2020). arXiv:2010.11929

  26. Liu, Z., Hu, H., Lin, Y., Yao, Z., Xie, Z., Wei, Y., Ning, J., Cao, Y., Zhang, Z., Dong, L., Wei, F., Guo, B.: Swin transformer v2: scaling up capacity and resolution. In: 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). IEEE; CVF; IEEE Comp Soc., New Orleans, pp. 11999–12009. https://doi.org/10.1109/CVPR52688.2022.01170 (2022)

  27. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers (2020). arXiv:2005.12872

  28. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  29. Ren, S., He, K., Girshick, R., Sun, J.: Faster r-cnn: towards real-time object detection with region proposal networks. IEEE Trans. Pattern Anal. Mach. Intell. 39(6), 1137–1149 (2017). https://doi.org/10.1109/TPAMI.2016.2577031

    Article  Google Scholar 

  30. Yu, J., Jiang, Y., Wang, Z., Cao, Z., Huang, T.S.: Unitbox: an advanced object detection network. In: Proceedings of the 24th ACM International Conference on Multimedia (2016)

  31. Zheng, Z., Wang, P., Ren, D., Liu, W., Ye, R., Hu, Q., Zuo, W.: Enhancing geometric factors in model learning and inference for object detection and instance segmentation. IEEE Trans. Cybern. 52(8), 8574–8586 (2022). https://doi.org/10.1109/TCYB.2021.3095305

  32. Zhang, Y.-F., Ren, W., Zhang, Z., Jia, Z., Wang, L., Tan, T.: Focal and efficient iou loss for accurate bounding box regression. Neurocomput. 506, 146–157 (2022). https://doi.org/10.1016/j.neucom.2022.07.042

    Article  Google Scholar 

  33. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-nms: improving object detection with one line of code. IEEE, pp. 5562–5570 (2017). https://doi.org/10.1109/ICCV.2017.593

  34. Du, L., Zhang, R., Wang, X.: Overview of two-stage object detection algorithms. J. Phys. Conf. Ser. 1544 (2020)

  35. Chen, Y., Han, C., Wang, N., Zhang, Z.: Revisiting feature alignment for one-stage object detection (2019). arXiv:1908.01570

  36. Redmon, J., Farhadi, A.: Yolo9000: better, faster, stronger. In: 30TH IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2017). IEEE; IEEE Comp Soc; CVF, Honolulu, pp. 6517–6525. https://doi.org/10.1109/CVPR.2017.690 (2017)

  37. Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S.E., Fu, C.-Y., Berg, A.C.: Ssd: single shot multibox detector. In: European Conference on Computer Vision (2015)

  38. Fu, C.-Y., Liu, W., Ranga, A., Tyagi, A., Berg, A.C.: Dssd: deconvolutional single shot detector (2017). arXiv:1701.06659

  39. Jeong, J., Park, H., Kwak, N.: Enhancement of ssd by concatenating feature maps for object detection (2017). arXiv:1705.09587

  40. Lin, T.-Y., Goyal, P., Girshick, R., He, K., Dollar, P.: Focal loss for dense object detection. In: 2017 16th IEEE International Conference on Computer Vision (ICCV). IEEE; IEEE Comp Soc, Venice, pp. 2999–3007. https://doi.org/10.1109/ICCV.2017.324 (2017)

  41. Redmon, J., Farhadi, A.: Yolov3: An incremental improvement (2018). arXiv:1804.02767

  42. Shen, Z., Liu, Z., Li, J., Jiang, Y.-G., Chen, Y., Xue, X.: Dsod: learning deeply supervised object detectors from scratch. In: 2017 16th IEEE International Conference on Computer Vision (ICCV). IEEE; IEEE Comp Soc, Venice, pp. 1937–1945. https://doi.org/10.1109/ICCV.2017.212 (2017)

  43. Li, Z., Zhou, F.: Fssd: feature fusion single shot multibox detector (2017). arXiv:1712.00960

  44. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.: Single-shot refinement neural network for object detection. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4203–4212 (2017)

  45. Law, H., Deng, J.: Cornernet: detecting objects as paired keypoints. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer vision - ECCV 2018, PT XIV. Lecture notes in computer science, vol. 11218, pp. 765–781. 15th European Conference on Computer Vision (ECCV), Munich. https://doi.org/10.1007/978-3-030-01264-9_45 (2018)

  46. Duan, K., Bai, S., Xie, L., Qi, H., Huang, Q., Tian, Q.: Centernet: keypoint triplets for object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV 2019). IEEE; IEEE Comp Soc; CVF, Seoul, pp. 6568–6577. https://doi.org/10.1109/ICCV.2019.00667 (2019)

  47. Tian, Z., Shen, C., Chen, H., He, T.: Fcos: Fully convolutional one-stage object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV 2019). IEEE; IEEE Comp Soc; CVF, Seoul, pp. 9626–9635. https://doi.org/10.1109/ICCV.2019.00972 (2019)

  48. Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping extreme and center points. In: 2019 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019). IEEE; CVF; IEEE Comp Soc, Long Beach, pp. 850–859. https://doi.org/10.1109/CVPR.2019.00094 (2019)

  49. Zhou, X., Zhuo, J., Krahenbuhl, P.: Bottom-up object detection by grouping extreme and center points. In: 2019 32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR 2019). IEEE; CVF; IEEE Comp Soc, Long Beach, pp. 850–859. https://doi.org/10.1109/CVPR.2019.00094 (2019)

  50. Bochkovskiy, A., Wang, C.-Y., Liao, H.-Y.M.: Yolov4: optimal speed and accuracy of object detection (2020). arXiv:2004.10934

  51. Jocher, G.R., Stoken, A., Borovec, J., NanoCode, ChristopherSTAN, Changyu, L., Laughing, tkianai, Hogan, A., lorenzomammana, yxNONG, AlexWang, Diaconu, L., Marc, wanghaoyang, ah, Doug, Ingham, F., Frederik, Guilhen, Hatovix, Poznanski, J., Fang, J., Yu, L., Changyu, Wang, M., Gupta, N.K., Akhtar, O., PetrDvoracek, Rai, P.: ultralytics/yolov5: v3.1 - bug fixes and performance improvements (2020)

  52. Zhang, S., Chi, C., Yao, Y., Lei, Z., Li, S.Z.: Bridging the gap between anchor-based and anchor-free detection via adaptive training sample selection. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9756–9765 (2019)

  53. Tan, M., Pang, R., Le, Q.V.: Efficientdet: scalable and efficient object detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8–10787 (2019)

  54. Wang, C.-Y., Yeh, I.-H., Liao, H.: You only learn one representation: unified network for multiple tasks. J. Inf. Sci. Eng. 39, 691–709 (2021)

    Google Scholar 

  55. e, Z., Liu, S., Wang, F., Li, Z., Sun, J.: Yolox: exceeding yolo series in 2021 (2021). hyperimagehttp://arxiv.org/abs/2107.08430arXiv:2107.08430

  56. hu, X., Su, W., Lu, L., Li, B., Wang, X., Dai, J.: Deformable detr: deformable transformers for end-to-end object detection (2020). arXiv:2010.04159

  57. Li, C., Li, L., Jiang, H., Weng, K., Geng, Y., Li, L., Ke, Z., Li, Q., Cheng, M., Nie, W., Li, Y., Zhang, B., Liang, Y., Zhou, L., Xu, X., Chu, X., Wei, X., Wei, X.: Yolov6: a single-stage object detection framework for industrial applications (2022). arXiv:2209.02976

  58. Wang, C.-Y., Bochkovskiy, A., Liao, H.-Y.M.: Yolov7: trainable bag-of-freebies sets new state-of-the-art for real-time object detectors (2022). arXiv:2207.02696

  59. Zhang, X., Zeng, H., Guo, S., Zhang, L.: Efficient long-range attention network for image super-resolution. In: Avidan, S., Brostow, G., Cisse, M., Farinella, G., Hassner, T. (eds.) Computer vision - ECCV 2022, PT XVII. Lecture notes in computer science. 17th European Conference on Computer Vision (ECCV), Tel Aviv, vol. 13677, pp. 649–667. https://doi.org/10.1007/978-3-031-19790-1_39 (2022)

  60. Ultralytics: ultralytics’s official github repository (2023). Available at: https://github.com/ultralytics/ultralytics#documentation

  61. Fang, Y., Liao, B., Wang, X., Fang, J., Qi, J., Wu, R., Niu, J., Liu, W.: You only look at one sequence: rethinking transformer in vision through object detection. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J. (eds.) Advances in Neural Information Processing Systems 34 (NEURIPS 2021). 35th Conference on Neural Information Processing Systems (NeurIPS), ELECTR NETWORK (2021)

  62. Ying, Z., Lin, Z., Wu, Z., Liang, K., Hu, X.: A modified-yolov5s model for detection of wire braided hose defects. Measurement 190 (2022). https://doi.org/10.1016/j.measurement.2021.110683

  63. Zhao, K., Wang, Y., Zuo, Y., Zhang, C.: Palletizing robot positioning bolt detection based on improved yolo-v3. J. Intell. Robot. Syst. 104(3) (2022). https://doi.org/10.1007/s10846-022-01580-w

  64. Zhang, Y., Liang, J., Lu, Q., Luo, L., Zhu, W., Wang, Q., Lin, J.: A novel efficient convolutional neural algorithm for multi-category aliasing hardware recognition. Sensors 22(14) (2022). https://doi.org/10.3390/s22145358

  65. Li, Y., Wang, J., Huang, J., Li, Y.: Research on deep learning automatic vehicle recognition algorithm based on res-yolo model. Sensors 22(10) (2022). https://doi.org/10.3390/s22103783

  66. Bie, M., Liu, Y., Li, G., Hong, J., Li, J.: Real-time vehicle detection algorithm based on a lightweight you-only-look-once (yolov5n-l) approach. Exp. Syst. Appl. 213(B) (2023). https://doi.org/10.1016/j.eswa.2022.119108

  67. Gong, X., Zhang, X., Zhang, R., Wu, Q., Wang, H., Guo, R., Chen, Z.: U3-yoloxs: an improved yoloxs for uncommon unregular unbalance detection of the rape subhealth regions. Comput. Electron. Agri. 203 (2022). https://doi.org/10.1016/j.compag.2022.107461

  68. Yang, R., Hu, Y., Yao, Y., Gao, M., Liu, R.: Fruit target detection based on bco-yolov5 model. Mobile Inf. Syst. 2022 (2022). https://doi.org/10.1155/2022/8457173

  69. Jin, Z., Liu, L., Gong, D., Li, L.: Target recognition of industrial robots using machine vision in 5g environment. Front. Neurorobot. 15 (2021). https://doi.org/10.3389/fnbot.2021.624466

  70. Kapoor, A., Singhal, A.: A comparative study of k-means, k-means++ and fuzzy c-means clustering algorithms. In: 2017 3rd International Conference on Computational Intelligence & Communication Technology (CICT), pp. 1–6 (2017)

  71. Li, F., Gao, D., Yang, Y., Zhu, J.: Small target deep convolution recognition algorithm based on improved yolov4. Int. J Mach. Learn. Cybern. 14(2, SI), 387–394 (2023) .https://doi.org/10.1007/s13042-021-01496-1

  72. Yang, J., Wu, S., Gou, L., Yu, H., Lin, C., Wang, J., Wang, P., Li, M., Li, X.: Scd: a stacked carton dataset for detection and segmentation. SENSORS 22(10) (2022). https://doi.org/10.3390/s22103617

  73. Zhang, S., Wen, L., Bian, X., Lei, Z., Li, S.Z.: Occlusion-aware r-cnn: detecting pedestrians in a crowd. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer Vision - ECCV 2018, PT III. Lecture Notes in Computer Science. 15th European Conference on Computer Vision (ECCV), Munich, vol. 11207, pp. 657–674. https://doi.org/10.1007/978-3-030-01219-9_39 (2018)

  74. Gupta, A., Anpalagan, A., Guan, L., Khwaja, A.S.: Deep learning for object detection and scene perception in self-driving cars: survey, challenges, and open issues. Array 10, 100057 (2021)

  75. Ye, T., Zhao, Z., Wang, S., Zhou, F., Gao, X.: A stable lightweight and adaptive feature enhanced convolution neural network for efficient railway transit object detection. IEEE Trans. Intell. Transp. Syst. 23(10), 17952–17965 (2022). https://doi.org/10.1109/TITS.2022.3156267

    Article  Google Scholar 

  76. Zheng, H., Liu, H., Qi, W., Xie, H.: Little-yolov4: a lightweight pedestrian detection network based on yolov4 and ghostnet. Wireless Commun. Mobile Comput. 2022 (2022). https://doi.org/10.1155/2022/5155970

  77. Yun, J., Jiang, D., Liu, Y., Sun, Y., Tao, B., Kong, J., Tian, J., Tong, X., Xu, M., Fang, Z.: Real-time target detection method based on lightweight convolutional neural network. Frontiers Bioeng. Biotechnol. 10 (2022). https://doi.org/10.3389/fbioe.2022.861286

  78. Zhang, F., Lv, Z., Zhang, H., Guo, J., Wang, J., Lu, T., Zhangzhong, L.: Verification of improved YOLOX model in detection of greenhouse crop organs: Considering tomato as example. Comput. Electron. Agric. 205, (2023). https://doi.org/10.1016/j.compag.2022.107582

  79. Liu, M., Jia, W., Wang, Z., Niu, Y., Yang, X., Ruan, C.: An accurate detection and segmentation model of obscured green fruits. Comput. Electron. Agri. 197 (2022). https://doi.org/10.1016/j.compag.2022.106984

  80. Yan, B., Fan, P., Lei, X., Liu, Z., Yang, F.: A real-time apple targets detection method for picking robot based on improved yolov5. Remote Sens. 13(9) (2021). https://doi.org/10.3390/rs13091619

  81. Zhang, Y., Zhang, W., Yu, J., He, L., Chen, J., He, Y.: Complete and accurate holly fruits counting using yolox object detection. Comput. Electron. Agri. 198 (2022). https://doi.org/10.1016/j.compag.2022.107062

  82. Zhao, F., Wei, R., Chao, Y., Shao, S., Jing, C.: Infrared bird target detection based on temporal variation filtering and a gaussian heat-map perception network. Appl. Sciences-Basel 12(11) (2022). https://doi.org/10.3390/app12115679

  83. Zhu, G., Wei, Z., Lin, F.: An object detection method combining multi-level feature fusion and region channel attention. IEEE ACCESS 9, 25101–25109 (2021). https://doi.org/10.1109/ACCESS.2021.3057086

    Article  Google Scholar 

  84. Luo, Y., Cao, X., Zhang, J., Pan, L., Wang, T., Feng, Q.: Multi-scale reinforcement learning strategy for object detection. In: 2022 47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Inst Elect & Elect Engineers; Inst Elect & Elect Engineers Signal Proc Soc, Singapore, pp. 2015–2019. https://doi.org/10.1109/ICASSP43922.2022.9746264 (2022)

  85. Priyanka, Baranwal, N., Singh, K.N., Singh, A.K.: Yolo-based roi selection for joint encryption and compression of medical images with reconstruction through super-resolution network. Future Gen. Comput. Syst.(2023). https://doi.org/10.1016/j.future.2023.08.018

  86. Hsu, W.-Y., Chen, P.-C.: Pedestrian detection using stationary wavelet dilated residual super-resolution. IEEE Trans. Inst. Meas. 71 (2022) https://doi.org/10.1109/TIM.2022.3142061

  87. Zhao, J., Guo, W., Zhang, Z., Yu, W.: A coupled convolutional neural network for small and densely clustered ship detection in sar images. Sci. China-Information Sci. 62(4) (2019). https://doi.org/10.1007/s11432-017-9405-6

  88. Li, K., Cheng, G., Bu, S., You, X.: Rotation-insensitive and context-augmented object detection in remote sensing images. IEEE Trans. Geosci. Remote Sens. 56(4), 2337–2348 (2018). https://doi.org/10.1109/TGRS.2017.2778300

    Article  Google Scholar 

  89. Sun, X., Wang, P., Wang, C., Liu, Y., Fu, K.: Pbnet: part-based convolutional neural network for complex composite object detection in remote sensing imagery. ISPRS J. Photogramm. Remote Sens. 173, 50–65 (2021). https://doi.org/10.1016/j.isprsjprs.2020.12.015

    Article  Google Scholar 

  90. Zhang, D., Zeng, W., Yao, J., Han, J.: Weakly supervised object detection using proposal- and semantic-level relationships. IEEE Trans. Pattern Anal. Mach. Intell. 44(6), 3349–3363 (2022). https://doi.org/10.1109/TPAMI.2020.3046647

    Article  Google Scholar 

  91. Liu, J., Li, S., Zhou, C., Cao, X., Gao, Y., Wang, B.: Sraf-net: a scene-relevant anchor-free object detection network in remote sensing images. IEEE Trans. Geosci. Remote Sens. 60 (2022). https://doi.org/10.1109/TGRS.2021.3124959

  92. Han, J., Liu, S., Qin, G., Zhao, Q., Zhang, H., Li, N.: A local contrast method combined with adaptive background estimation for infrared small target detection. IEEE Geosci. Remote Sens. Lett. 16(9), 1442–1446 (2019). https://doi.org/10.1109/LGRS.2019.2898893

    Article  Google Scholar 

  93. Wei, J., He, J., Zhou, Y., Chen, K., Tang, Z., Xiong, Z.: Enhanced object detection with deep convolutional neural networks for advanced driving assistance. IEEE Trans. Intell. Transp. Syst. 21(4), 1572–1583 (2020). https://doi.org/10.1109/TITS.2019.2910643

    Article  Google Scholar 

  94. Li, Y., Chen, Y., Wang, N., Zhang, Z.: Scale-aware trident networks for object detection. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV 2019). IEEE; IEEE Comp Soc; CVF, Seoul, pp. 6053–6062. https://doi.org/10.1109/ICCV.2019.00615 (2019)

  95. Piao, Z., Wang, J., Tang, L., Zhao, B., Zhou, S.: Anchor-free object detection with scale-aware networks for autonomous driving. Electronics 11(20) (2022). https://doi.org/10.3390/electronics11203303

  96. Sun, S.-G., Park, H.: Segmentation of forward-looking infrared image using fuzzy thresholding and edge detection. Optic. Eng. 40, 2638–2645 (2001)

    Article  Google Scholar 

  97. Liu, M., Chai, Z., Deng, H., Liu, R.: A cnn-transformer network with multiscale context aggregation for fine-grained cropland change detection. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 15, 4297–4306 (2022). https://doi.org/10.1109/JSTARS.2022.3177235

  98. Shakibania, H., Raoufi, S., Khotanlou, H.: Cdan: convolutional dense attention-guided network for low-light image enhancement (2023). https://api.semanticscholar.org/CorpusID:261101157

  99. Qi, G., Zhang, Y., Wang, K., Mazur, N., Liu, Y., Malaviya, D.: Small object detection method based on adaptive spatial parallel convolution and fast multi-scale fusion. Remote. Sens. 14, 420 (2022)

    Article  Google Scholar 

  100. Chen, H., Wang, Q., Ruan, W., Zhu, J., Lei, L., Wu, X., Hao, G.: Alfpn: adaptive learning feature pyramid network for small object detection. Int. J. Intell. Syst. (2023)

  101. Dong, R., Pan, X., Li, F.: Denseu-net-based semantic segmentation of objects in urban remote sensing images. IEEE ACCESS 7, 65347–65356 (2019). https://doi.org/10.1109/ACCESS.2019.2917952

    Article  Google Scholar 

  102. Luo, Y., Cao, X., Zhang, J., Cheng, P., Wang, T., Feng, Q.: Dynamic multi-scale loss balance for object detection. In: 2022 47th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Inst Elect & Elect Engineers; Inst Elect & Elect Engineers Signal Proc Soc, Singapore, pp. 4873–4877. https://doi.org/10.1109/ICASSP43922.2022.9747148 (2022)

  103. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: Wallach, H., Larochelle, H., Beygelzimer, A., d’Alche-Buc, F., Fox, E., Garnett, R. (eds.) Advances in Neural Information Processing Systems (NIPS 2019). 33rd Conference on Neural Information Processing Systems (NeurIPS), Vancouver, vol. 32 (2019)

  104. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks. IEEE Trans. Pattern Anal. Mach. Intell. 42(8), 2011–2023 (2020). https://doi.org/10.1109/TPAMI.2019.2913372

    Article  Google Scholar 

  105. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: Cbam: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer vision - ECCV 2018, PT VII. Lecture Notes in Computer Science. 15th European Conference on Computer Vision (ECCV), Munich, vol. 11211, pp. 3–19. https://doi.org/10.1007/978-3-030-01234-2_1 (2018)

  106. Lang, N., Wang, D., Cheng, P.: A learning-based approach for aluminum tube defect detection using imbalanced dataset. Meas. 218, 113018 (2023). https://doi.org/10.1016/j.measurement.2023.113018

    Article  Google Scholar 

  107. Chen, G., Qin, H.: Class-discriminative focal loss for extreme imbalanced multiclass object detection towards autonomous driving. Vis. Comput. 38, 1051–1063 (2021)

    Article  Google Scholar 

  108. Wang, S., Wang, Y., Chang, Y., Zhao, R., She, Y.: Ebse-yolo: high precision recognition algorithm for small target foreign object detection. IEEE Access 11, 57951–57964 (2023)

    Article  Google Scholar 

  109. Cong, P., Lv, K., Feng, H., Zhou, J.: Improved yolov3 model for workpiece stud leakage detection. Electronics 11(21) (2022). https://doi.org/10.3390/electronics11213430

  110. Phan, T.H., Yamamoto, K.: Resolving class imbalance in object detection with weighted cross entropy losses (2020). arXiv:2006.01413

  111. Wang, X., Wei, J., Liu, Y., Li, J., Zhang, Z., Chen, J., Jiang, B.: Research on morphological detection of fr i and fr ii radio galaxies based on improved yolov5. UNIVERSE 7(7) (2021). https://doi.org/10.3390/universe7070211

  112. Duan, K., Du, D., Qi, H., Huang, Q.: Detecting small objects using a channel-aware deconvolutional network. IEEE Trans. Circ. Syst. Vid. Technol. 30, 1639–1652 (2020)

    Article  Google Scholar 

  113. Zeng, Y., Zhang, T., He, W., Zhang, Z.: Yolov7-uav: An unmanned aerial vehicle image object detection algorithm based on improved yolov7. Electronics 12(14) (2023) https://doi.org/10.3390/electronics12143141

  114. Deng, C., Jing, D., Han, Y., Wang, S., Wang, H.: Far-net: fast anchor refining for arbitrary-oriented object detection. IEEE Geosci. Remote Sens. Lett. 19 (2022) https://doi.org/10.1109/LGRS.2022.3144513

  115. Zhu, Y., Seneviratne, L.D.: On the recognition and location of partially occluded objects. J. Intell. Robot. Syst. 25, 133–151 (1999)

    Article  Google Scholar 

  116. Sun, J., He, X., Wu, M., Wu, X., Shen, J., Lu, B.: Detection of tomato organs based on convolutional neural network under the overlap and occlusion backgrounds. Mach. Vis. Appl. 31(5) (2020). https://doi.org/10.1007/s00138-020-01081-6

  117. Zhou, J., Yang, D., Cui, Z., Wang, S., Sheng, H.: Lrfnet: an occlusion robust fusion network for semantic segmentation with light field. In: 2021 IEEE 33RD International Conference on Tools with Artificial Intelligence (ICTAI 2021). Proceedings-International Conference on Tools With Artificial Intelligence. IEEE; IEEE Comp Soc; Biol Artificial Intelligence Fdn, pp. 1178–1186. Electr Network. https://doi.org/10.1109/ICTAI52525.2021.00186 (2021)

  118. Sahin, G., Itti, L.: Multi-task occlusion learning for real-time visual object tracking. In: 2021 IEEE International Conference on Image Processing (ICIP), Electr network. IEEE; Inst Elect & Elect Engineers Signal Proc Soc, pp. 524–528 (2021). https://doi.org/10.1109/ICIP42928.2021.9506239

  119. Hanson, N., Lvov, G., Padir, T.: Occluded object detection and exposure in cluttered environments with automated hyperspectral anomaly detection. Front. Robot. AI 9 (2022). https://doi.org/10.3389/frobt.2022.982131

  120. Deng, B., Lin, M., Long, S.: Object occlusion of adding new categories in objection detection (2022). arXiv:2206.05730

  121. Jiao, Z., Huang, K., Jia, G., Lei, H., Cai, Y., Zhong, Z.: An effective litchi detection method based on edge devices in a complex scene. Biosyst. Eng. 222, 15–28 (2022). https://doi.org/10.1016/j.biosystemseng.2022.07.009

    Article  Google Scholar 

  122. Yang, X., Wu, J., He, L., Ma, S., Hou, Z., Sun, W.: Cpss-fat: a consistent positive sample selection for object detection with full adaptive threshold. Pattern Recognit. 141, 109627 (2023). https://doi.org/10.1016/j.patcog.2023.109627

    Article  Google Scholar 

  123. Zhao, J., Zhu, H., Niu, L.: Bitnet: a lightweight object detection network for real-time classroom behavior recognition with transformer and bi-directional pyramid network. J. King Saud Univ. Comput. Inf. Sci. 35(8), 101670 (2023). https://doi.org/10.1016/j.jksuci.2023.101670

    Article  Google Scholar 

  124. Heo, J., Wang, Y., Park, J.: Occlusion-aware spatial attention transformer for occluded object recognition. Pattern Recognit. Lett. 159, 70–76 (2022). https://doi.org/10.1016/j.patrec.2022.05.006

    Article  Google Scholar 

  125. Shang, Q., Zhang, J., Yan, G., Hong, L., Zhang, R., Li, W., Xia, H.: Target tracking algorithm based on occlusion prediction. Displays 79, 102481 (2023). https://doi.org/10.1016/j.displa.2023.102481

    Article  Google Scholar 

  126. Sheng, X., Kang, C., Zheng, J., Lyu, C.: An edge-guided method to fruit segmentation in complex environments. Comput. Electro. Agri. 208, 107788 (2023). https://doi.org/10.1016/j.compag.2023.107788

    Article  Google Scholar 

  127. Xu, C., Lang, W., Xin, R., Mao, K., Jiang, H.: Generative detect for occlusion object based on occlusion generation and feature completing. J. Vis. Commun. Image Repre. 78, 103189 (2021). https://doi.org/10.1016/j.jvcir.2021.103189

    Article  Google Scholar 

  128. Ma, N., Zhang, X., Zheng, H.-T., Sun, J.: Shufflenet v2: practical guidelines for efficient cnn architecture design. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) Computer vision - ECCV 2018, PT XIV. Lecture Notes in Computer Science, vol. 11218, pp. 122–138. 15th European Conference on Computer Vision (ECCV), Munich. https://doi.org/10.1007/978-3-030-01264-9_8 (2018)

  129. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections for efficient neural networks. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems 28 (NIPS 2015). Advances in neural information processing systems, vol. 28. 29th Annual Conference on Neural Information Processing Systems (NIPS), Montreal (2015)

  130. Xue, G., Li, S., Hou, P., Gao, S., Tan, R.: Research on lightweight yolo coal gangue detection algorithm based on resnet18 backbone feature network. Int. Things 22, 100762 (2023)

    Article  Google Scholar 

  131. Cui, J., Zheng, H., Zeng, Z., Yang, Y., Ma, R., Tao, N., Tan, J.X., Feng, X., Qi, L.: Real-time missing seedling counting in paddy fields based on lightweight network and tracking-by-detection algorithm. Comput. Electron. Agric. 212, 108045 (2023)

    Article  Google Scholar 

  132. Mahaur, B., Mishra, K.K., Kumar, A.: An improved lightweight small object detection framework applied to real-time autonomous driving. Exp. Syst. Appl. (2023)

  133. Ge, S., Luo, Z., Zhao, S., Jin, X., Zhang, X.-Y.: Compressing deep neural networks for efficient visual inference. In: 2017 IEEE International Conference on Multimedia and Expo (ICME). IEEE, Hong Kong, pp. 667–672 (2017)

  134. Wang, J.: Lightweight and real-time object detection model on edge devices with model quantization. J. Phys. Conf. Ser. 1748 (2021)

  135. Liqun, C., Lei, H.: Clipping-based neural network post training quantization for object detection. In: 2023 IEEE International Conference on Control, Electronics and Computer Technology (ICCECT), pp 1192–1196 (2023)

  136. Zhang, W., Biswas, G., Zhao, Q., Zhao, H., Feng, W.: Knowledge distilling based model compression and feature learning in fault diagnosis. Appl. Soft Comput. 88 (2020). https://doi.org/10.1016/j.asoc.2019.105958

  137. Wang, W., Su, C., Han, G., Zhang, H.: A lightweight crack segmentation network based on knowledge distillation. J. Building Eng. (2023)

  138. Shang, Y., Xu, X., Jiao, Y., Wang, Z., Hua, Z., Song, H.: Using lightweight deep learning algorithm for real-time detection of apple flowers in natural environments. Comput. Electron. Agric. 207, 107765 (2023)

    Article  Google Scholar 

  139. Zhang, Y., Yang, Y., Sun, J., Zhang, P.P., Ji, R., Shan, H.: Surface defect detection of wind turbine based on lightweight yolov5s model. SSRN Electron. J. (2023)

  140. Zhao, S., Zhang, S., Lu, J., Wang, H., Feng, Y., Shi, C., Li, D., Zhao, R.: A lightweight dead fish detection method based on deformable convolution and yolov4. Comput. Electron. Agric. 198, 107098 (2022)

    Article  Google Scholar 

  141. Bie, M., Liu, Y., Li, G., Hong, J., Li, J.: Real-time vehicle detection algorithm based on a lightweight you-only-look-once (yolov5n-l) approach. Expert Syst. Appl. 213, 119108 (2022)

    Article  Google Scholar 

  142. Park, K., Jang, W., Lee, W., Nam, K., Seong, K., Chai, K., Li, W.-S.: Real-time mask detection on google edge tpu. (2020). arXiv:2010.04427

  143. Zeng, K., Ma, Q., Wu, J.W., Chen, Z., Shen, T., Yan, C.: Fpga-based accelerator for object detection: a comprehensive survey. J. Supercomput. 78(12), 14096–14136 (2022). https://doi.org/10.1007/s11227-022-04415-5

    Article  Google Scholar 

  144. Zhang, F., Li, Y., Ye, Z.: Apply yolov4-tiny on an fpga-based accelerator of convolutional neural network for object detection. J. Phys. Conf. Ser. 2303 (2022)

  145. Li, W., Hu, H.: Fpga-based object detection acceleration architecture design. J. Phys. Conf. Ser. 2405 (2022)

  146. Xu, J., Du, W., Jin, Y., He, W., Cheng, R.: Ternary compression for communication-efficient federated learning. IEEE Trans. Neural Netw. Learn. Syst. 33(3), 1162–1176 (2022). https://doi.org/10.1109/TNNLS.2020.3041185

    Article  MathSciNet  Google Scholar 

  147. Liang, J., Zhang, Y., Xue, J., Hu, Y.: Lightweight image super-resolution network using involution. Mach. Vis. Appl. 33(5) (2022). https://doi.org/10.1007/s00138-022-01307-9

  148. Zhong, X., Wang, M., Liu, W., Yuan, J., Huang, W.: Scpnet: self-constrained parallelism network for keypoint-based lightweight object detection. J. Vis. Commun. Image Represent. 90, 103719 (2022)

    Article  Google Scholar 

  149. Zhang, T., Pan, Y.: Real-time detection of a camouflaged object in unstructured scenarios based on hierarchical aggregated attention lightweight network. Adv. Eng. Inf. (2023)

  150. Huang, J., Chen, J., Wang, H.: A lightweight and efficient one-stage detection framework. Comput. Electr. Eng. 105, 108520 (2023)

    Article  Google Scholar 

  151. Xu, H., Li, B., Zhong, F.: Light-yolov5: a lightweight algorithm for improved yolov5 in complex fire scenarios (2022). arXiv:2208.13422

  152. Wang, Z., Jin, L., Wang, S., Xu, H.: Apple stem/calyx real-time recognition using yolo-v5 algorithm for fruit automatic loading system. Postharvest Bio. Technol. (2022)

  153. Hou, Z., Kung, S.Y.: Parameter efficient dynamic convolution via tensor decomposition. In: British Machine Vision Conference (2021). https://api.semanticscholar.org/CorpusID:249892686

  154. Li, Y., Shi, Z., Liu, C., Tian, W., Kong, Z.J., Williams, C.B.: Augmented time regularized generative adversarial network (atr-gan) for data augmentation in online process anomaly detection. IEEE Trans. Auto. Sci. Eng. 19, 3338–3355 (2022)

    Article  Google Scholar 

  155. Malialis, K., Papatheodoulou, D., Filippou, S., Panayiotou, C.G., Polycarpou, M.M.: Data augmentation on-the-fly and active learning in data stream classification. In: 2022 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1408–1414 (2022)

  156. Regulariza, B., Uddin, A.F.M.S., Monira, S., Shin, W., Chung, T., Bae, S.-H.: Saliencymix: a saliency guided data augmentation strategy for better regularization (2020). arXiv:2006.01791

  157. Choi, H.K., Choi, J., Kim, H.J.: Tokenmixup: efficient attention-guided token-level data augmentation for transformers (2022). arXiv:2210.07562

  158. Han, K., Wang, Y., Tian, Q., Guo, J., Xu, C., Xu, C.: Ghostnet: more features from cheap operations. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1577–1586 (2019)

  159. Srinivas, A., Lin, T.-Y., Parmar, N., Shlens, J., Abbeel, P., Vaswani, A.: Bottleneck transformers for visual recognition. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 16514–16524 (2021)

  160. Liang, T., Chu, X., Liu, Y., Wang, Y., Tang, Z., Chu, W., Chen, J., Ling, H.: Cbnet: a composite backbone network architecture for object detection. IEEE Trans. Image Process. 31, 6893–6906 (2021)

    Article  Google Scholar 

  161. Jiang, Y., Tan, Z., Wang, J., Sun, X., Lin, M., Li, H.: Giraffedet: a heavy-neck paradigm for object detection (2022). arXiv:2202.04256

  162. Lee, Y., Kim, J., Willette, J., Hwang, S.J.: Mpvit: multi-path vision transformer for dense prediction. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7277–7286 (2021)

  163. Ghiasi, G., Lin, T.-Y., Pang, R., Le, Q.V.: Nas-fpn: learning scalable feature pyramid architecture for object detection. 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7029–7038 (2019)

  164. Park, H.-J., Choi, Y.J., Lee, Y.-W., Kim, B.-G.: ssfpn: scale sequence (s2) feature-based feature pyramid network for object detection. Sensors (Basel, Switzerland) 23 (2022)

  165. Liu, Z., Cheng, J.: Cb-fpn: object detection feature pyramid network based on context information and bidirectional efficient fusion. Pattern Anal. Appl. 26, 1441–1452 (2023)

    Article  Google Scholar 

  166. Hou, Q., Zhou, D., Feng, J.: Coordinate attention for efficient mobile network design. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 13708–13717 (2021)

  167. Sagar, A.: Dmsanet: dual multi scale attention network (2021). arXiv:2106.08382

  168. Cao, J., Chen, Q., Guo, J., Shi, R.: Attention-guided context feature pyramid network for object detection (2020). arXiv:2005.11475

  169. Li, Z., Lang, C., Liang, L., Zhao, J., Feng, S., Hou, Q., Feng, J.: Dense attentive feature enhancement for salient object detection. IEEE Trans. Circ. Syst. Vid. Technol. 32, 8128–8141 (2021)

    Article  Google Scholar 

  170. Gevorgyan, Z.: Siou loss: more powerful learning for bounding box regression (2022). arXiv:2205.12740

  171. Oksuz, K., Cam, B.C., Akbas, E., Kalkan, S.: Rank & sort loss for object detection and instance segmentation. 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 2989–2998 (2021)

  172. Wang, J., Xu, C., Yang, W., Yu, L.: A normalized gaussian wasserstein distance for tiny object detection (2021). arXiv:2110.13389

  173. He, J., Erfani, S.M., Ma, X., Bailey, J., Chi, Y., Hua, X.: Alpha-iou: a family of power intersection over union losses for bounding box regression (2021). arXiv:2110.13675

  174. Chen, D., Miao, D.: Control distance iou and control distance iou loss function for better bounding box regression (2021). arXiv:2103.11696

  175. Dai, J., Qi, H., Xiong, Y., Li, Y., Zhang, G., Hu, H., Wei, Y.: Deformable convolutional networks. 2017 IEEE International Conference on Computer Vision (ICCV), pp. 764–773 (2017)

  176. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions (2015). arXiv:1511.07122

  177. Chen, J., Kao, S.-h., He, H., Zhuo, W., Wen, S., Lee, C.-H., Chan, S.-H.G.: Run, don’t walk: chasing higher flops for faster neural networks. 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 12021–12031 (2023)

  178. Park, H.-J., Choi, Y.J., Lee, Y.-W., Kim, B.-G.: ssfpn: scale sequence (s2) feature-based feature pyramid network for object detection. Sensors (Basel, Switzerland) 23 (2022)

  179. Zhang, H., Li, F., Liu, S., Zhang, L., Su, H., Zhu, J.-J., Ni, L.M.-s., Shum, H.-y.: Dino: Detr with improved denoising anchor boxes for end-to-end object detection (2022). arXiv:2203.03605

  180. Zand, M., Etemad, A., Greenspan, M.A.: Objectbox: From centers to boxes for anchor-free object detection. In: European Conference on Computer Vision (2022). https://api.semanticscholar.org/CorpusID:250526817

  181. Kim, K.-j., Lee, H.S.: Probabilistic anchor assignment with iou prediction for object detection (2020). arXiv:2007.08103

  182. Liu, Y.-C., Ma, C.-Y., Kira, Z.: Unbiased teacher v2: semi-supervised object detection for anchor-free and anchor-based detectors. 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9809–9818 (2022)

  183. Dai, X., Chen, Y., Xiao, B., Chen, D., Liu, M., Yuan, L., Zhang, L.: Dynamic head: unifying object detection heads with attentions. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 7369–7378 (2021)

  184. Zhu, X., Lyu, S., Wang, X., Zhao, Q.: Tph-yolov5: improved yolov5 based on transformer prediction head for object detection on drone-captured scenarios. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), pp. 2778–2788 (2021)

  185. Wu, Y., Chen, Y., Yuan, L., Liu, Z., Wang, L., Li, H., Fu, Y.R.: Rethinking classification and localization for object detection. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10183–10192 (2019)

  186. Baidya, R., Jeong, H.-J.: Yolov5 with convmixer prediction heads for precise object detection in drone imagery. Sensors (Basel, Switzerland) 22 (2022)

  187. Solovyev, R.A., Wang, W., Gabruseva, T.: Weighted boxes fusion: ensembling boxes from different object detection models. Image Vis. Comput. 107, 104117 (2021)

    Article  Google Scholar 

  188. Bodla, N., Singh, B., Chellappa, R., Davis, L.S.: Soft-nms - improving object detection with one line of code. 2017 IEEE International Conference on Computer Vision (ICCV), pp. 5562–5570 (2017)

  189. Zhao, H., Wang, J.-K., Dai, D., Lin, S., Chen, Z.: D-nms: a dynamic nms network for general object detection. Neurocomput. 512, 225–234 (2022)

    Article  Google Scholar 

  190. Liu, L., Hirakawa, T., Yamashita, T., Fujiyoshi, H.: Class-wise fm-nms for knowledge distillation of object detection. 2022 IEEE International Conference on Image Processing (ICIP), pp. 1641–1645 (2022)

  191. Mantovani, R.G., Horváth, T., Cerri, R., Junior, S.B., Vanschoren, J., Carvalho, A.C.P.: An empirical study on hyperparameter tuning of decision trees (2018). arXiv:1812.02207

  192. Duarte, E., Wainer, J.: Empirical comparison of cross-validation and internal metrics for tuning svm hyperparameters. Pattern Recognit. Lett. 88, 6–11 (2017)

    Article  Google Scholar 

  193. Zhou, Y., Cahya, S., Combs, S.A., Nicolaou, C.A., Wang, J.-B., Desai, P.V., Shen, J.: Exploring tunable hyperparameters for deep neural networks with industrial adme data sets. J. Chem. Inf. Model 59(3), 1005–1016 (2018)

    Article  Google Scholar 

  194. Probst, P.: Hyperparameters, tuning and meta-learning for random forest and other machine learning algorithms. (2019). https://api.semanticscholar.org/CorpusID:201710457

  195. Goyal, P., Dollár, P., Girshick, R.B., Noordhuis, P., Wesolowski, L., Kyrola, A., Tulloch, A., Jia, Y., He, K.: Accurate, large minibatch sgd: training imagenet in 1 hour (2017). arXiv:1706.02677

  196. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014). arXiv:1412.6980

  197. Zhuang, J., Tang, T.M., Ding, Y., Tatikonda, S.C., Dvornek, N.C., Papademetris, X., Duncan, J.S.: Adabelief optimizer: adapting stepsizes by the belief in observed gradients (2020). arXiv:2010.07468

  198. Isa, I.S., Rosli, M.S.A., Yusof, U.K., Maruzuki, M.I.F., Sulaiman, S.N.: Optimizing the hyperparameter tuning of yolov5 for underwater detection. IEEE Access 10, 52818–52831 (2022)

    Article  Google Scholar 

  199. Kingma, D.P., Salimans, T., Welling, M.: Variational dropout and the local reparameterization trick. In: NIPS (2015). https://api.semanticscholar.org/CorpusID:46343823

  200. Mobiny, A., Nguyen, H.V., Moulik, S., Garg, N., Wu, C.C.: Dropconnect is effective in modeling uncertainty of bayesian deep networks. Scientific Reports 11 (2019)

  201. Bouthillier, X., Delaunay, P., Bronzi, M., Trofimov, A., Nichyporuk, B., Szeto, J., Sepah, N., Raff, E., Madan, K., Voleti, V.S., Kahou, S.E., Michalski, V., Serdyuk, D., Arbel, T., Pal, C., Varoquaux, G., Vincent, P.: Accounting for variance in machine learning benchmarks (2021). arXiv:2103.03098

  202. Takenaga, S., Watanabe, S., Nomura, M., Ozaki, Y., Onishi, M., Habe, H.: Evaluating initialization of nelder-mead method for hyperparameter optimization in deep learning. 2020 25th International Conference on Pattern Recognition (ICPR), pp. 3372–3379 (2021)

  203. Yin, Y., Zhang, G.: Object detection based on multiple trick feature pyramid networks and dynamic balanced l1 loss. Int. J. Wirel. Mob. Comput. 22, 93–103 (2022)

    Article  Google Scholar 

  204. Li, T., Shu, X., Chen, G., Wang, Y.: Size-sensitive optimization of loss function on vision-based object detection. Proceedings of the 2021 5th International Conference on Electronic Information Technology and Computer Engineering (2021)

  205. Zhang, Y.Y., Wang, H., Lv, X., Zhang, P.: Capturing the grouping and compactness of high-level semantic feature for saliency detection. Neural Netw. 142, 351–362 (2021). https://doi.org/10.1016/j.neunet.2021.04.028

    Article  Google Scholar 

  206. Rao, Y., Mu, H., Yang, Z., Zheng, W., Wang, F., Pu, J., Zeng, S.: B-pesnet: smoothly propagating semantics for robust and reliable multi-scale object detection for secure systems. CMES-Comput. Model. Eng. Sci. 132(3), 1039–1054 (2022). https://doi.org/10.32604/cmes.2022.020331

  207. Rao, Y., Mu, H., Yang, Z., Zheng, W., Wang, F., Pu, J., Zeng, S.: B-pesnet: smoothly propagating semantics for robust and reliable multi-scale object detection for secure systems. CMES-Comput. Model. Eng. Sci. 132(3), 1039–1054 (2022). https://doi.org/10.32604/cmes.2022.020331

  208. Li, J., Zhu, Z., Liu, H., Su, Y., Deng, L.: Strawberry r-cnn: Recognition and counting model of strawberry based on improved faster r-cnn. Eco. Inf. 77 (2023). https://doi.org/10.1016/j.ecoinf.2023.102210

  209. Zhang, Y., Sung, Y.: Traffic accident detection using background subtraction and cnn encoder-transformer decoder in video frames. Math. 11(13) (2023). https://doi.org/10.3390/math11132884

  210. Li, C.-j., Qu, Z., Wang, S.-y.: A method of knowledge distillation based on feature fusion and attention mechanism for complex traffic scenes. Eng. Appl. Artif. Intelli. 124 (2023). https://doi.org/10.1016/j.engappai.2023.106533

  211. Zeng, Y., Zhang, T., He, W., Zhang, Z.: Yolov7-uav: an unmanned aerial vehicle image object detection algorithm based on improved yolov7. Electronics 12(14) (2023). https://doi.org/10.3390/electronics12143141

  212. Wang, T., Wang, J., Wang, R.: Camouflaged object detection with a feature lateral connection network. Electronics 12(12) (2023). https://doi.org/10.3390/electronics12122570

  213. Yi, C., Liu, J., Huang, T., Xiao, H., Guan, H.: An efficient method of pavement distress detection based on improved yolov7. Meas. Sci. Technol. 34(11) (2023). https://doi.org/10.1088/1361-6501/ace929

  214. Shen, J., Zhou, Y.: Accurate and real-time object detection in crowded indoor spaces based on the fusion of dbscan algorithm and improved yolov4-tiny network. J. Intell. Syste. 32(1) (2023). https://doi.org/10.1515/jisys-2022-0268

  215. Nag, S., Bhattacharyya, M., Mukherjee, A., Kundu, R.: Serf: towards better training of deep neural networks using log-softplus error activation function. In: 2023 23rd IEEE/CVF Winter Conference on Applications of Computer Vision (WACV). IEEE; CVF; IEEE Comp Soc, Waikoloa, pp. 5313–5322. https://doi.org/10.1109/WACV56688.2023.00529 (2023)

  216. Devries, T., Taylor, G.W.: Improved regularization of convolutional neural networks with cutout (2017). arXiv:1708.04552

Download references

Acknowledgements

This work was supported by the Shandong Province Science and Technology Small and Medium-sized Enterprise Innovation Capability Improvement Project, “Research and Development of Intelligent Aluminum Alloy Casting Production System”(Grant No. 2022TSGC2051).Shandong Province Natural Science Foundation, “Real-time Reconstruction of Physical 3D Model of Colon Based on Active Flexible Endoscope”(Grant No. ZR2020ME116).Shandong Province Key Support Area Introduction of Urgently Needed and Scarce Talents Project, “Research and Industrialization of Intelligent Loading System for Smart Mines”.

Author information

Authors and Affiliations

Authors

Contributions

Jinwei Qiao made primary contributions to the conception or design of the work. Kaiguo Geng made optimization of the concept reconsideration.

Corresponding author

Correspondence to Jinwei Qiao.

Ethics declarations

Ethics approval

Approval was obtained from the ethics committee of the Qilu University of Technology.

Consent to participate

Informed consent was obtained from all individual participants included in the study.

Consent for publication

The participant has consented to the submission of the research manuscript to the journal.

Conflicts of interest

The authors have no conflicts of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geng, K., Qiao, J., Liu, N. et al. Research on Real-time Detection of Stacked Objects Based on Deep Learning. J Intell Robot Syst 109, 82 (2023). https://doi.org/10.1007/s10846-023-02009-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10846-023-02009-8

Keywords

Navigation