Abstract
The advent of mass customization has precipitated a need within the industry for the implementation of collaborative robots, which facilitate the integration of human cognitive capabilities with the speed and repeatability of robots. This coupling, however, engenders a closer collaboration between the partners, thereby necessitating collective synergy to achieve optimal scheduling while circumventing musculoskeletal disorders. It is imperative to study and analyze the behavior of humans and robots in interaction, as the current paradigm strives to achieve an optimal interaction between the two partners with the objective of ensuring productivity, safety, cognitive ergonomics and preventing musculoskeletal disorders. However, human behavior is variable and can, on occasion, give rise to anomalies in the interaction. Consequently, it is imperative that the robot partner exhibits precise behavior, whether proactive or reactive. This paper puts forth a unified perspective on robot behavior when confronted with human abnormal behavior during interaction on the factory floor. This systematic literature review and meta-analysis employs the PRISMA methodology to examine the literature on human and robot behavior in human–robot interaction in an industrial context, with a particular focus on robot behavior when confronted with human abnormal behavior during interaction. A systematic search of nearly 2,609 papers yielded 133 for inclusion in this systematic review. In light of the findings presented in this review, it can be concluded that the selection of robot actions based on human behavior represents a novel area of research that requires further investigation, particularly with regard to proactive online behavioral approaches. Indeed, there is a vast array of robot behavior modalities in response to typical human behavior (e.g., command input). However, there is currently no prescribed robot reaction based on atypical human behavior (e.g., misplacement in the factory floor, repetition of tasks, etc.). This lack of definition complicates the deployment of such technology in the smart factory. Consequently, it is essential to define new decision strategies based, for instance, on artificial intelligence approaches.
Article PDF
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Avoid common mistakes on your manuscript.
References
Krüger, J., Lien, T.K., Verl, A.: Cooperation of human and machines in assembly lines. CIRP Ann. 58(2), 628–646 (2009)
Reinhart, G., Spillner, R., Shen, Y.: Approaches of applying human-robot-interaction-technologies to assist workers with musculoskeletal disorders in production. Dans Intelligent Robotics and Applications: 5th International Conference, ICIRA 2012, Montreal, Canada, October 3–5, 2012, Proceedings, Part II 5, pp. 74–84: Springer (2012)
Mukherjee, D., Gupta, K., Chang, L.H., Najjaran, H.: A survey of robot learning strategies for human-robot collaboration in industrial settings. Robot. Comput. Integr. Manuf. 73, 102231 (2022)
Gustavsson, P., Holm, M., Syberfeldt, A., Wang, L.: Human-robot collaboration–towards new metrics for selection of communication technologies. Procedia CIRP 72, 123–128 (2018)
Ansari, M.A., Singh, D.K., Singh, V.P.: Detecting abnormal behavior in megastore for crime prevention using a deep neural architecture. Int. J. Multimed. Inf. Retr. 12(2), 25 (2023)
Moher, D., Liberati, A., Tetzlaff, J., Altman, D.G., PRISMA Group*: Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann. Intern. Med. 151(4), 264–269 (2009)
Haddaway, N.R., Page, M.J., Pritchard, C.C., McGuinness, L.A.: PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Syst. Rev. 18(2), e1230 (2022)
Gross, S., Krenn, B.: A Communicative Perspective on Human–Robot Collaboration in Industry: Mapping Communicative Modes on Collaborative Scenarios. Int. J. Soc. Robotics, pp. 1–18. (2023)
Safeea, M., Neto, P., Bearee, R.: On-line collision avoidance for collaborative robot manipulators by adjusting off-line generated paths: An industrial use case. Robotics Auton, Syst. 119, 278–288 (2019)
Neto, P., Simão, M., Mendes, N., Safeea, M.: Gesture-based human-robot interaction for human assistance in manufacturing. Int J Adv. Manu. Technol. 101, 119–135 (2019)
Magrini, E., Ferraguti, F., Ronga, A.J., Pini, F., De Luca, A., Leali, F.: Human-robot coexistence and interaction in open industrial cells. Robotics Comput. Integr. Manuf. 61, 101846 (2020)
Maragliulo, S., Lopes, P.F.A., Osorio, L.B., De Almeida, A.T., Tavakoli, M.: Foot gesture recognition through dual channel wearable EMG System. IEEE Sensors J. 19(22), 10187–10197 (2019)
Aswad, F.E., Djogdom, G.V.T., Otis, M.J.-D., Ayena, J.C., Meziane, R.: Image Generation for 2D-CNN Using Time-Series Signal Features from Foot Gesture Applied to Select Cobot Operating Mode. Sensors 21(17), 5743 (2021)
Tchane Djogdom, G.V., Otis. M. J.-D., Meziane, R.: Dynamic time warping–based feature selection method for foot gesture cobot operation mode selection. Int. J. Adv. Manufact. Technol. pp. 1–21. (2023)
Plappert, M., Mandery, C., Asfour, T.: Learning a bidirectional mapping between human whole-body motion and natural language using deep recurrent neural networks. Robotics Auton. Syst. 109, 13–26 (2018)
Ashok, K., Ashraf, M., Thimmia Raja, J., Hussain, M.Z., Singh, D.K., Haldorai, A.: Collaborative analysis of audio-visual speech synthesis with sensor measurements for regulating human–robot interaction. Int. J. Syst. Assur. Eng. Manag. pp. 1–8. (2022)
Rossi, S., Leone, E., Fiore, M., Finzi, A., Cutugno, F.: An extensible architecture for robust multimodal human-robot communication. Dans 2013 IEEE/RSJ Int. Conf. Intell. Robots Syst. pp. 2208–2213. IEEE (2013)
Mizanoor Rahman, S., Ikeura, R.: Cognition-based variable admittance control for active compliance in flexible manipulation of heavy objects with a power-assist robotic system. Robotics Biomimetics 5(1), 1–25 (2018)
Wang, W., Chen, Y., Li, R., Jia, Y.: Learning and comfort in human–robot interaction: A review. Appl. Sci. 9(23), 5152 (2019)
Lorenzini, M., Kim, W., De Momi, E., Ajoudani, A.: A new overloading fatigue model for ergonomic risk assessment with application to human-robot collaboration," Dans 2019 International Conference on Robotics and Automation (ICRA), pp. 1962–1968. IEEE (2019)
Kühnlenz, B., Kühnlenz, K.: Reduction of heart rate by robot trajectory profiles in cooperative hri. Dans Proc. ISR 2016: 47st Int. Symp. Robotics. pp. 1–6. VDE (2016)
de La Bourdonnaye, F., Setchi, R., Zanni-Merk, C.: Gaze trajectory prediction in the context of social robotics. IFAC-PapersOnLine 49(19), 126–131 (2016)
Videla, L.S., Rao, M.N., Anand, D., Vankayalapati, H.D., Razia, S.: Deformable facial fitting using active appearance model for emotion recognition. Dans Smart Intell. Comput. Appl. Proc. Second Int. Conf. SCI 2018 1, 135–144 (2019). (Springer)
Almohamade, S., Clark, J., Law, J.: Continuous User Authentication for Human-Robot Collaboration. Dans Proc. 16th Int. Conf. Availability Reliab. Secur. pp. 1–9. (2021)
Maderna, R., Pozzi, M., Zanchettin, A.M., Rocco, P., Prattichizzo, D.: Flexible scheduling and tactile communication for human–robot collaboration. Robotics Comput. Integr. Manuf. 73, 102233 (2022)
Askarpour, M., Mandrioli, D., Rossi, M., Vicentini, F.: Formal model of human erroneous behavior for safety analysis in collaborative robotics. Robotics Comput. Integr. Manuf. 57, 465–476 (2019)
Shin, D., Wysk, R.A., Rothrock, L.: Formal model of human material-handling tasks for control of manufacturing systems. IEEE Transact. Syst. Man Cybern.-Part A: Syst. Hum. 36(4), 685–696 (2006)
Hollnagel, E.: Cognitive reliability and error analysis method (CREAM): Elsevier, (1998)
Kirwan, B.: Human error identification techniques for risk assessment of high risk systems—Part 1: review and evaluation of techniques. Appl. Ergon. 29(3), 157–177 (1998)
Reason, J.: Human error: Cambridge university press, (1990)
Rahman, S.M., Wang, Y.: Mutual trust-based subtask allocation for human–robot collaboration in flexible lightweight assembly in manufacturing. Mechatronics 54, 94–109 (2018)
Zhang, R., Lv, Q., Li, J., Bao, J., Liu, T., Liu, S.: A reinforcement learning method for human-robot collaboration in assembly tasks. Robotics Comput. Integr. Manuf. 73, 102227 (2022)
Lorenzini, M., Lagomarsino, M., Fortini, L., Gholami, S., Ajoudani, A.: Ergonomic Human-Robot Collaboration in Industry: A Review. Front. Robotics AI 9, 262 (2023)
Askarpour, M.: How to Formally Model Human in Collaborative Robotics. arXiv preprint arXiv:2012.01647, (2020)
Faroni, M., et al.: A layered control approach to human-aware task and motion planning for human-robot collaboration. Dans 2020 29th IEEE Int. Conf. Robot Hum. Interact. Commun. (RO-MAN), pp. 1204–1210. IEEE (2020)
Tang, B., Jiang, C., He, H., Guo, Y.: Probabilistic human mobility model in indoor environment. Dans 2016 Int. Joint Conf. Neural Netw. (IJCNN), pp. 1601–1608. IEEE (2016)
Ji, Z., et al.: Towards shared autonomy framework for human-aware motion planning in industrial human-robot collaboration. Dans 2020 IEEE 16th Int. Conf. Autom. Sci. Eng (CASE), pp. 411–417. IEEE (2020)
Embrey, D.: SHERPA: A systematic human error reduction and prediction approach. Dans Proc. Int. Top. Meet. Adv. Hum. Fact. Nucl. Power Syst. (1986)
Boru, B., Erin, K.: Novel technique for control of industrial robots with wearable and contactless technologies. Measurement 192, 110850 (2022)
Kim, H., Li, C.: RaaS (Robot-as-a-Service) focusing on the human-robot collaboration in industrial sites. Dans 2022 14th Int. Conf. Knowl. Smart Technol. (KST), pp. 143–146. IEEE (2022)
Chiurco, A., et al.: Real-time Detection of Worker’s Emotions for Advanced Human-Robot Interaction during Collaborative Tasks in Smart Factories. Procedia Comput. Sci. 200, 1875–1884 (2022)
Angleraud, A., Mehman Sefat, A., Netzev, M., Pieters, R.: Coordinating Shared Tasks in Human-Robot Collaboration by Commands. Front. Robotics AI 8, 734548 (2021)
Chico, A., et al.: Hand gesture recognition and tracking control for a virtual UR5 robot manipulator," Dans 2021 IEEE Fifth Ecuador Technical Chapters Meeting (ETCM), pp. 1–6. IEEE (2021)
Huo, Y., Li, X., Zhang, X., Sun, D.: Intention-driven variable impedance control for physical human-robot interaction. Dans 2021 IEEE/ASME Int. Conf. Adv. Intell. Mechatronics (AIM), pp. 1220–1225. IEEE (2021)
González-Docasal, A., Aceta, C., Arzelus, H., Alvarez, A., Fernández, I., Kildal, J.: Towards a natural human-robot interaction in an industrial environment. Conversational Dialogue Syst. Next Decade. pp. 243–255. (2021)
Chen, H., Leu, M.C., Yin, Z.: Real-Time Multi-Modal Human-Robot Collaboration Using Gestures and Speech. J. Manuf. Sci. Eng. 144(10), 101007 (2022)
Vysocký, A., Poštulka, T., Chlebek, J., Kot, T., Maslowski, J., Grushko, S.: Hand Gesture Interface for Robot Path Definition in Collaborative Applications: Implementation and Comparative Study. Sensors 23(9), 4219 (2023)
Peral, M., Sanfeliu, A., Garrell, A.: Efficient Hand Gesture Recognition for Human-Robot Interaction. IEEE Robotics Autom. Lett. 7(4), 10272–10279 (2022)
Bingol, M.C., Aydogmus, O.: Performing predefined tasks using the human–robot interaction on speech recognition for an industrial robot. Eng. Appl. Artif. Intell. 95, 103903 (2020)
Paul, I., Ghosh, S., Konar, A.: Voice Command decoding for position control of Jaco robot arm using a type-2 fuzzy classifier. Dans 2020 IEEE Int. Conf. Electron. Comput. Commun. Technol. (CONECCT), pp. 1–6. IEEE (2020)
Chen, H., Leu, M.C., Tao, W., Yin, Z.: Design of a real-time human-robot collaboration system using dynamic gestures. Dans ASME Int. Mech. Eng. Congr. Exposition 84492, V02BT02A051 (2020). (American Society of Mechanical Engineers)
Nogueira, R., Reis, J., Pinto, R., Gonçalves, G.: Self-adaptive cobots in cyber-physical production systems. Dans 2019 24th IEEE Int. Conf. Emerg. Technol. Fact. Autom. (ETFA), pp. 521–528. IEEE (2019)
De Franco, A., Lamon, E., Balatti, P., De Momi, E., Ajoudani, A.: An Intuitive augmented reality interface for task scheduling, monitoring, and work performance improvement in human-robot collaboration. Dans 2019 IEEE Int. Work Conf. Bioinspired Intell. (IWOBI), pp. 75–80. IEEE (2019)
Tang, G., Webb, P.: The design and evaluation of an ergonomic contactless gesture control system for industrial robots. J Robotics. 2018. (2018)
Du, G., Zhang, P., Li, D.: Human–manipulator interface based on multisensory process via Kalman filters. IEEE Transact. Ind. Electron. 61(10), 5411–5418 (2014)
Bright, T., Adali, S., Bright, G.: Close human robot collaboration by means of a low-cost sensory glove for advanced manufacturing systems. Dans 2021 Int. Conf. Electr. Comput. Commun. Mechatronics Eng. (ICECCME), pp. 1–8. IEEE (2021)
Duarte, N.F., Chatzilygeroudis, K., Santos-Victor, J., Billard, A.: From human action understanding to robot action execution: how the physical properties of handled objects modulate non-verbal cues. Dans 2020 Joint IEEE 10th Int. Conf. Dev. Learn. Epigenetic Robotics (ICDL-EpiRob), pp. 1–6. IEEE (2020)
Zhang, S., Huang, H., Huang, D., Yao, L., Wei, J., Fan, Q.: Subtask-learning based for robot self-assembly in flexible collaborative assembly in manufacturing. Int. J. Adv. Manuf. Technol. 120(9–10), 6807–6819 (2022)
Lai, Y., Paul, G., Cui, Y., Matsubara, T.: User intent estimation during robot learning using physical human robot interaction primitives. Autonomous Robots 46(2), 421–436 (2022)
Iturrate, I., Kramberger, A., Sloth, C.: Quick setup of force-controlled industrial gluing tasks using learning from demonstration. Front. Robotics AI 8, 767878 (2021)
Al-Yacoub, A., Zhao, Y., Eaton, W., Goh, Y.M., Lohse, N.: Improving human robot collaboration through Force/Torque based learning for object manipulation. Robotics Comput. Integr. Manuf. 69, 102111 (2021)
Cheng, Y., Sun, L., Tomizuka, M.: Human-aware robot task planning based on a hierarchical task model. IEEE Robotics Autom. Lett. 6(2), 1136–1143 (2021)
Helenon, F., Thiery, S., Nyiri, E., Gibaru, O.: Cognitive architecture for intuitive and interactive task learning in industrial collaborative robotics. Dans 2021 the 5th Int. Conf. Robotics Contr. Autom. pp. 119–124. (2021)
Wang, N., Chen, C., Di Nuovo, A.: A framework of hybrid force/motion skills learning for robots. IEEE Transact. Cogn. Dev. Syst. 13(1), 162–170 (2020)
Roveda, L., Magni, M., Cantoni, M., Piga, D., Bucca, G.: Human–robot collaboration in sensorless assembly task learning enhanced by uncertainties adaptation via Bayesian Optimization. Robotics Autonom. Syst. 136, 103711 (2021)
Rodriguez-Liñan, A., et al.: An Approach to Acquire Path-Following Skills by Industrial Robots From Human Demonstration. IEEE Acc. 9, 82351–82363 (2021)
Roveda, L., Magni, M., Cantoni, M., Piga, D., Bucca, G.: Assembly task learning and optimization through human’s demonstration and machine learning. Dans 2020 IEEE Int. Conf. Syst. Man Cybern. (SMC), pp. 1852–1859. IEEE (2020)
Roveda, L., Pallucca, G., Pedrocchi, N., Braghin, F., Tosatti, L.M.: Iterative learning procedure with reinforcement for high-accuracy force tracking in robotized tasks. IEEE Transact. Ind. Inform. 14(4), 1753–1763 (2017)
Vakanski, A., Mantegh, I., Irish, A., Janabi-Sharifi, F.: Trajectory learning for robot programming by demonstration using hidden Markov model and dynamic time warping. IEEE Transact. Syst. Man Cybern. Part B (Cybernetics) 42(4), 1039–1052 (2012)
De Coninck, E., Verbelen, T., Van Molle, P., Simoens, P., Dhoedt, B.: Learning robots to grasp by demonstration. Robotics Auton. Syst. 127, 103474 (2020)
Akkaladevi, S.C., Plasch, M., Hofmann, M., Pichler, A.: Semantic knowledge based reasoning framework for human robot collaboration. Procedia CIRP 97, 373–378 (2021)
Ochoa, H., Cortesão, R.: Control architecture for robotic-assisted polishing tasks based on human skills. Dans IECON 2019-45th Ann. Conf. IEEE Ind. Electron. Soc. 1, 630–637 (2019)
Hwang, P.-J., Hsu, C.-C., Chou, P.-Y., Wang, W.-Y., Lin, C.-H.: Vision-Based Learning from Demonstration System for Robot Arms. Sensors 22(7), 2678 (2022)
Ray, A., Mukherji, K., Konar, A., Nagar, A.K.: Type-2 Fuzzy Logic Induced Gesture Recognition for Robot Task Planning. Dans 2018 IEEE Symp. Ser. Comput. Intell. (SSCI), pp. 1359–1366. IEEE (2018)
Kyrarini, M., Haseeb, M.A., Ristić-Durrant, D., Gräser, A.: Robot learning of industrial assembly task via human demonstrations. Autonomous Robots 43, 239–257 (2019)
Angleraud, A., Houbre, Q., Pieters, R.: Teaching semantics and skills for human-robot collaboration. Paladyn J. Behav. Robot. 10(1), 318–329 (2019)
Munzer, T., Toussaint, M., Lopes, M.: Efficient behavior learning in human–robot collaboration. Auton. Robot. 42, 1103–1115 (2018)
Akkaladevi, S.C., Plasch, M., Maddukuri, S., Eitzinger, C., Pichler, A., Rinner, B.: Toward an interactive reinforcement based learning framework for human robot collaborative assembly processes. Front. Robot. AI 5, 126 (2018)
Roveda, L.: A user-intention based adaptive manual guidance with force-tracking capabilities applied to walk-through programming for industrial robots. Dans 2018 15th Int. Conf. Ubiquit. Robot. (UR), pp. 369–376. IEEE (2018)
Gu, Y., Sheng, W., Crick, C., Ou, Y.: Automated assembly skill acquisition and implementation through human demonstration. Robot. Auton. Syst. 99, 1–16 (2018)
Kumar, S., Savur, C., Sahin, F.: Dynamic awareness of an industrial robotic arm using time-of-flight laser-ranging sensors. Dans 2018 IEEE Int. Conf. Syst. Man Cybern. (SMC), pp. 2850–2857. IEEE (2018)
Karagiannis, P., et al.: Adaptive speed and separation monitoring based on switching of safety zones for effective human robot collaboration. Robot. Comput.Integr. Manufact. 77, 102361 (2022)
Liu, Q., Liu, Z., Xiong, B., Xu, W., Liu, Y.: Deep reinforcement learning-based safe interaction for industrial human-robot collaboration using intrinsic reward function. Adv. Eng. Inform. 49, 101360 (2021)
Indri, M., Sibona, F., Cheng, P.D.C., Possieri, C.: Online supervised global path planning for AMRs with human-obstacle avoidance. Dans 2020 25th IEEE Int. Conf. Emerg. Technol. Fact. Autom. (ETFA) 1, 1473–1479 (2020). (IEEE)
Heredia, J., Cabrera, M.A., Tirado, J., Panov, V., Tsetserukou, D.: Cobotgear: Interaction with collaborative robots using wearable optical motion capturing systems. Dans 2020 IEEE 16th Int. Conf. Autom. Sci. Eng. (CASE), pp. 1584–1589. IEEE (2020)
Scimmi, L.S., Melchiorre, M., Troise, M., Mauro, S., Pastorelli, S.: A practical and effective layout for a safe human-robot collaborative assembly task. Appl. Sci. 11(4), 1763 (2021)
El-Shamouty, M., Wu, X., Yang, S., Albus, M., Huber, M.F.: Towards safe human-robot collaboration using deep reinforcement learning. Dans 2020 IEEE international conference on robotics and automation (ICRA), pp. 4899–4905. IEEE (2020)
Kanazawa, A., Kinugawa, J., Kosuge, K.: Adaptive motion planning for a collaborative robot based on prediction uncertainty to enhance human safety and work efficiency. IEEE Transact. Robot. 35(4), 817–832 (2019)
Casalino, A., Bazzi, D., Zanchettin, A.M., Rocco P.: Optimal proactive path planning for collaborative robots in industrial contexts. Dans 2019 Int. Conf. Robot. Autom. (ICRA), pp. 6540–6546. IEEE (2019)
Safeea, M., Neto, P., Béarée, R.: A quest towards safe human robot collaboration. Dans Towards Auton. Robot. Syst.: 20th Ann. Conf. TAROS 2019, London, UK, July 3–5, 2019, Proceedings, Part II 20, pp. 493–495. Springer (2019)
Cabrera, M.A., Heredia, J., Tirado, J., Panov, V., Hagos, F., Tsetserukou, D.: CoHaptics: Development of Human-Robot Collaborative System with Forearm-worn Haptic Display to Increase Safety in Future Factories. Dans 2021 IEEE 17th Int. Conf. Autom. Sci. Eng. (CASE), pp. 74–80. IEEE (2021)
Wada, H., Kinugawa, J., Kosuge, K.: Reactive motion planning using time-layered C-spaces for a collaborative robot PaDY. Adv. Robot. 35(8), 490–503 (2021)
Lyu, J., Ruppel, P., Hendrich, N., Li, S., Görner, M., Zhang, J.: Efficient and collision-free human-robot collaboration based on intention and trajectory prediction. IEEE Transact. Cogn. Dev. Syst. (2022)
Huang, Z., et al.: Hierarchical intention tracking for robust human-robot collaboration in industrial assembly tasks. Dans 2023 IEEE Int. Conf. Robot. Autom. (ICRA), pp. 9821–9828. IEEE (2023)
Wang, Y., et al.: An online collision-free trajectory generation algorithm for human–robot collaboration. Robot. Comput. Integr. Manuf. 80, 102475 (2023)
Demirtas, S., Cankurt, T., Samur, E.: Development and implementation of a collaborative workspace for industrial robots utilizing a practical path adaptation algorithm and augmented reality. Mechatron. 84, 102764 (2022)
Nemec, B., Mavsar, M., Simonič, M., Hrovat, M.M., Škrabar, J., Ude, A.: Integration of a reconfigurable robotic workcell for assembly operations in automotive industry. Dans 2022 IEEE/SICE Int. Symp. Syst. Integr. (SII), pp. 778–783. IEEE (2022)
Tashtoush, T. et al.: Human-robot interaction and collaboration (HRI-c) utilizing top-view RGB-d camera system. Int. J. Adv. Comput. Sci. Appl. vol. 12, no. 1, (2021)
Beckert, D., Pereira, A., Althoff, M.: Online verification of multiple safety criteria for a robot trajectory. Dans 2017 IEEE 56th Ann. Conf. Decis. Contr. (CDC), pp. 6454–6461. IEEE (2017)
Inam, R., Fersman, E., Raizer, K., Souza, R., Nascimento, A., Hata, A.: Safety for Automated Warehouse exhibiting collaborative robots. dans Saf. Reliab.–Saf. Soc. Chang. World: CRC Press, pp. 2021–2028. (2018)
Braglia, G., Tagliavini, M., Pini, F., Biagiotti, L.: Online Motion Planning for Safe Human-Robot Cooperation Using B-Splines and Hidden Markov Models. Robot. 12(4), 118 (2023)
Costanzo, M., De Maria, G., Lettera, G., Natale, C.: A multimodal approach to human safety in collaborative robotic workcells. IEEE Transact. Autom. Sci. Eng. 19(2), 1202–1216 (2021)
Zhou, G., Luo, J., Xu, S., Zhang, S.: A cooperative shared control scheme based on intention recognition for flexible assembly manufacturing. Front. Neurorobotics 16, 850211 (2022)
Wang, X.V., Wang, L.: Safety strategy in the smart manufacturing system: A human robot collaboration case study. Dans Int. Manuf. Sci. Eng. Conf. 84263, V002T07A026 (2020). (American Society of Mechanical Engineers)
Kumar, S., Sahin, F.: A framework for an adaptive human-robot collaboration approach through perception-based real-time adjustments of robot behavior in industry. Dans 2017 12th Syst. Syst. Eng. Conf. (SoSE), pp. 1–6. IEEE (2017)
Scalera, L., Giusti, A., Vidoni, R., Gasparetto, A.: Enhancing fluency and productivity in human-robot collaboration through online scaling of dynamic safety zones. Int. J. Adv. Manuf. Technol. 121(9–10), 6783–6798 (2022)
Du, G., Long, S., Li, F., Huang, X.: Active collision avoidance for human-robot interaction with ukf, expert system, and artificial potential field method. Front. Robot. AI 5, 125 (2018)
Araiza-lllan, D., Clemente, A.D.S.B.: Dynamic regions to enhance safety in human-robot interactions. Dans 2018 IEEE 23rd Int. Conf. Emerg. Technol. Fact. Autom. (ETFA) 1, 693–698 (2018). (IEEE)
Corrales, J., Gomez, G.G., Torres, F., Perdereau, V.: Cooperative tasks between humans and robots in industrial environments. Int. J. Adv. Robot. Syst. 9(3), 94 (2012)
Rezayati, M., Zanni, G., Zaoshi, Y., Scaramuzza, D., van de Venn, H.W.: Improving safety in physical human-robot collaboration via deep metric learning. Dans 2022 IEEE 27th Int. Conf. Emerg. Technol. Fact. Autom. (ETFA), pp. 1–8. IEEE (2022)
Ciccarelli, M., et al.: A system to improve the physical ergonomics in Human-Robot Collaboration. Procedia Comput. Sci. 200, 689–698 (2022)
Papanagiotou, D., Senteri, G., Manitsaris, S.: Egocentric gesture recognition using 3D convolutional neural networks for the spatiotemporal adaptation of collaborative robots. Front. Neurorobotics 15, 703545 (2021)
Dimitropoulos, N., Togias, T., Zacharaki, N., Michalos, G., Makris, S.: Seamless human–robot collaborative assembly using artificial intelligence and wearable devices. Appl. Sci. 11(12), 5699 (2021)
Fusaro, F., Lamon, E., De Momi, E., Ajoudani, A.: A human-aware method to plan complex cooperative and autonomous tasks using behavior trees. Dans 2020 IEEE-RAS 20th Int. Conf. Humanoid Robot. (Humanoids), pp. 522–529. IEEE (2021)
Oliff, H., Liu, Y., Kumar, M., Williams, M.: Improving human–robot interaction utilizing learning and intelligence: A human factors-based approach. IEEE Transact. Autom. Sci. Eng. 17(3), 1597–1610 (2020)
Tassi, F., Iodice, F., De Momi, E., Ajoudani, A.: Sociable and ergonomic human-robot collaboration through action recognition and augmented hierarchical quadratic programming. Dans 2022 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), pp. 10712–10719. IEEE (2022)
Olivas-Padilla, B.E., Papanagiotou, D., Senteri, G., Manitsaris, S., Glushkova, A.: Computational ergonomics for task delegation in Human-Robot Collaboration: spatiotemporal adaptation of the robot to the human through contactless gesture recognition. arXiv preprint arXiv:2203.11007 (2022)
El Makrini, I., Mathijssen, G., Verhaegen, S., Verstraten, T., Vanderborght, B.: A virtual element-based postural optimization method for improved ergonomics during human-robot collaboration. IEEE Transact. Autom. Sci. Eng. 19(3), 1772–1783 (2022)
Vianello, L., Mouret, J.-B., Dalin, E., Aubry, A., Ivaldi, S.: Human posture prediction during physical human-robot interaction. IEEE Robot. Autom. Lett. 6(3), 6046–6053 (2021)
Hofmann, M., Ganglbauer, M., Propst, M., Wögerer, C., Pichler, A.: Towards Human and Robot Collaborative Ergonomic Handling of Long Parts with a Loose Grip. Dans Smart Technol. Precis. Assem. 9th IFIP WG 5.5 Int. Precis. Assem. Semin. IPAS 2020 Virtual Event December 14–15, 2020 Revised Sel. Pap. 9, 249–259 (2021). (Springer)
Kim, W., Peternel, L., Lorenzini, M., Babič, J., Ajoudani, A.: A human-robot collaboration framework for improving ergonomics during dexterous operation of power tools. Robot. Comput. Integr. Manuf. 68, 102084 (2021)
Kim, W., Lee, J., Peternel, L., Tsagarakis, N., Ajoudani, A.: Anticipatory robot assistance for the prevention of human static joint overloading in human–robot collaboration. IEEE Robot. Autom Lett. 3(1), 68–75 (2017)
van der Spaa, L., Gienger, M., Bates, T., Kober, J.: Predicting and optimizing ergonomics in physical human-robot cooperation tasks. Dans 2020 IEEE Int. Conf. Robot. Autom. (ICRA), pp. 1799–1805. IEEE (2020)
van den Broek, M.K., Moeslund, T.B.: Ergonomic adaptation of robotic movements in human-robot collaboration. Dans Companion of the 2020 ACM/IEEE Int. Conf. Hum. Robot Interact. pp. 499–501 (2020)
Zanchettin, A.M., Lotano, E., Rocco, P.: Collaborative robot assistant for the ergonomic manipulation of cumbersome objects. Dans 2019 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), pp. 6729–6734. IEEE (2019)
Kim, W., et al.: Adaptable workstations for human-robot collaboration: A reconfigurable framework for improving worker ergonomics and productivity. IEEE Robot. Autom. Mag. 26(3), 14–26 (2019)
Peternel, L., Fang, C., Tsagarakis, N., Ajoudani, A.: A selective muscle fatigue management approach to ergonomic human-robot co-manipulation. Robot. Comput. Integr. Manuf. 58, 69–79 (2019)
Shafti, A., Ataka, A., Lazpita, B.U., Shiva, A., Wurdemann, H.A., Althoefer, K.: Real-time robot-assisted ergonomics. Dans 2019 Int. Conf. Robot. Autom. (ICRA), pp. 1975–1981. IEEE (2019)
Busch, B., Toussaint, M., Lopes, M.: Planning ergonomic sequences of actions in human-robot interaction. Dans 2018 IEEE Int. Conf. Robot. Autom. (ICRA), pp. 1916–1923. IEEE (2018)
Makrini, I.E., Merckaert, K., Winter, J.D., Lefeber, D., Vanderborght, B.: Task allocation for improved ergonomics in Human-Robot Collaborative Assembly. Interact. Stud. 20(1), 102–133 (2019)
Ferraguti, F., Villa, R., Landi, C.T., Zanchettin, A.M., Rocco, P., Secchi, C.: A unified architecture for physical and ergonomic human–robot collaboration. Robotica 38(4), 669–683 (2020)
Peternel, L., Fang, C., Tsagarakis, N., Ajoudani, A.: Online human muscle force estimation for fatigue management in human-robot co-manipulation. Dans 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 1340–1346. IEEE (2018)
Peternel, L., Tsagarakis, N., Caldwell, D., Ajoudani, A.: Robot adaptation to human physical fatigue in human–robot co-manipulation. Auton. Robot. 42, 1011–1021 (2018)
Peternel, L., Kim, W., Babič, J., Ajoudani, A.: Towards ergonomic control of human-robot co-manipulation and handover. Dans 2017 IEEE-RAS 17th Int. Conf. Humanoid Robot. (Humanoids), pp. 55–60. IEEE (2017)
Busch, B., Maeda, G., Mollard, Y., Demangeat, M., Lopes, M.: Postural optimization for an ergonomic human-robot interaction. Dans 2017 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), pp. 2778–2785. IEEE (2017)
Askarpour, M., Mandrioli, D., Rossi, M., Vicentini, F.: Modeling operator behavior in the safety analysis of collaborative robotic applications. Dans Comput. Saf. Reliab. Secur. 36th Int. Conf. SAFECOMP 2017, Trento, Italy, September 13-15, 2017 Proc. 36, 89–104 (2017). (Springer)
Messeri, C., Masotti, G., Zanchettin, A.M., Rocco, P.: Human-robot collaboration: Optimizing stress and productivity based on game theory. IEEE Robot. Autom. Lett. 6(4), 8061–8068 (2021)
Lagomarsino, M., Lorenzini, M., De Momi, E., Ajoudani, A.: Robot trajectory adaptation to optimise the trade-off between human cognitive ergonomics and workplace productivity in collaborative tasks. Dans 2022 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), pp. 663–669. IEEE (2022)
Rasch, R., Wachsmuth, S., König, M.: A joint motion model for human-like robot-human handover. Dans 2018 IEEE-RAS 18th Int. Conf. Humanoid Robot. (Humanoids), pp. 180–187. IEEE (2018)
Ali, A., Azevedo-Sa, H., Tilbury, D.M., Robert, L.P., Jr.: Heterogeneous human–robot task allocation based on artificial trust. Sci. Rep. 12(1), 15304 (2022)
Diamantopoulos, H., Wang, W.: Accommodating and assisting human partners in human-robot collaborative tasks through emotion understanding. Dans 2021 12th Int. Conf. Mech. Aerosp. Eng. (ICMAE), pp. 523–528. IEEE (2021)
Hannum, C., Li, R., Wang, W.: A Trust-Assist Framework for Human-Robot Co-Carry Tasks. Robot. 12(2), 30 (2023)
Lázaro, O.D.M., Mohammed, W.M., Ferrer, B.R., Bejarano, R., Lastra, J.L.M.: An approach for adapting a cobot workstation to human operator within a deep learning camera. Dans 2019 IEEE 17th Int. Conf. Ind. Inform. (INDIN) 1, 789–794 (2019). (IEEE)
Sadrfaridpour, B., Wang, Y.: Collaborative assembly in hybrid manufacturing cells: An integrated framework for human–robot interaction. IEEE Transact. Autom. Sci. Eng. 15(3), 1178–1192 (2017)
Milliez, G., Lallement, R., Fiore, M., Alami, R.: Using human knowledge awareness to adapt collaborative plan generation, explanation and monitoring. Dans 2016 11th ACM/IEEE Int. Conf. Hum.Robot Interact. (HRI), pp. 43–50. IEEE (2016)
Rojas, R.A., Wehrle, E., Vidoni, R.: A multicriteria motion planning approach for combining smoothness and speed in collaborative assembly systems. Appl. Sci. 10(15), 5086 (2020)
Rojas, R.A., Ruiz Garcia, M.A., Gualtieri, L., Wehrle, E., Rauch, E., Vidoni, R.: Automatic planning of psychologically less-stressful trajectories in collaborative workstations: An integrated toolbox for unskilled users. Dans ROMANSY 23-Robot Des. Dynamics Control Proc. 23rd CISM IFToMM Symp. 23, 118–126 (2021). (Springer)
Rojas, R.A., Garcia, M.A.R., Wehrle, E., Vidoni, R.: A variational approach to minimum-jerk trajectories for psychological safety in collaborative assembly stations. IEEE Robot. Autom. Lett. 4(2), 823–829 (2019)
Izquierdo-Badiola, S., Canal, G., Rizzo, C., Alenyà, G.: Improved task planning through failure anticipation in human-robot collaboration. Dans 2022 Int. Conf. Robot. Autom. (ICRA), pp. 7875–7880. IEEE (2022)
Pulikottil, T.B., Pellegrinelli, S., Pedrocchi, N.: A software tool for human-robot shared-workspace collaboration with task precedence constraints. Robot. Comput. Integr. Manuf. 67, 102051 (2021)
Murali, P.K., Darvish, K., Mastrogiovanni, F.: Deployment and evaluation of a flexible human–robot collaboration model based on AND/OR graphs in a manufacturing environment. Intell. Serv. Robot. 13, 439–457 (2020)
Zanchettin, A.M., Casalino, A., Piroddi, L., Rocco, P.: Prediction of human activity patterns for human–robot collaborative assembly tasks. IEEE Transact. Ind. Inform. 15(7), 3934–3942 (2018)
Zanchettin, A.M., Rocco, P.: Probabilistic inference of human arm reaching target for effective human-robot collaboration. Dans 2017 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), pp. 6595–6600. IEEE (2017)
Li, S., Zheng, P., Fan, J., Wang, L.: Toward proactive human–robot collaborative assembly: A multimodal transfer-learning-enabled action prediction approach. IEEE Transact. Ind. Electron. 69(8), 8579–8588 (2021)
Antonelli, D., Aliev, K.: Robust assembly task assignment in human robot collaboration as a Markov decision process problem. Procedia CIRP 112, 174–179 (2022)
Cramer, M., Kellens, K., Demeester, E.: Probabilistic decision model for adaptive task planning in human-robot collaborative assembly based on designer and operator intents. IEEE Robot. Autom. Lett. 6(4), 7325–7332 (2021)
Li, S., Fan, J., Zheng, P., Wang, L.: Transfer learning-enabled action recognition for human-robot collaborative assembly. Procedia CIRP 104, 1795–1800 (2021)
Gabler, V., Stahl, T., Huber, G., Oguz, O., Wollherr, D.: A game-theoretic approach for adaptive action selection in close proximity human-robot-collaboration. Dans 2017 IEEE Int. Conf. Robot. Autom. (ICRA), pp. 2897–2903. IEEE (2017)
Liu, B., et al.: Research on Cobot Action Decision-Making Method Based on Intuitionistic Fuzzy Set and Game Theory. IEEE Access 10, 103349–103363 (2022)
You, Y., Thomas, V., Colas, F., Alami, R., Buffet, O.: Robust Robot Planning for Human-Robot Collaboration. arXiv preprint arXiv:2302.13916 (2023)
Nicolis, D., Zanchettin, A.M., Rocco, P.: Human intention estimation based on neural networks for enhanced collaboration with robots. Dans 2018 IEEE/RSJ Int. Conf. Intell. Robot. Syst. (IROS), pp. 1326–1333. IEEE (2018)
Scimmi, L.S., Melchiorre, M., Mauro, S., Pastorelli, S.: Experimental real-time setup for vision driven hand-over with a collaborative robot. Dans 2019 International Conference on Control, Automation and Diagnosis (ICCAD), pp. 1–5. IEEE (2019)
Kinugawa, J., Kanazawa, A., Arai, S., Kosuge, K.: Adaptive task scheduling for an assembly task coworker robot based on incremental learning of human’s motion patterns,". IEEE Robot. Autom. Lett. 2(2), 856–863 (2017)
Palacio, J.C., Jiménez, Y.M., Schietgat, L., Van Doninck, B., Nowé, A.: A Q-Learning algorithm for flexible job shop scheduling in a real-world manufacturing scenario. Procedia CIRP 106, 227–232 (2022)
Alirezazadeh, S., Alexandre, L.A.: Dynamic Task Scheduling for Human-Robot Collaboration. IEEE Robot. Autom. Lett. 7(4), 8699–8704 (2022)
Cacace, J., Caccavale, R., Finzi, A., Lippiello, V.: Interactive plan execution during human-robot cooperative manipulation. IFAC-PapersOnLine 51(22), 500–505 (2018)
Leu, J., Cheng, Y., Tomizuka, M., Liu, C.: Robust task planning for assembly lines with human-robot collaboration. Dans Proc. Int. Symp. Flex. Autom. 2022 Int. Symp. Flex. Autom. 2022, pp. 188–195: The Institute of Systems, Control and Information Engineers.
Djogdom, G.V.T., Meziane, R., Otis, M.J.-D.: Robust dynamic robot scheduling for collaborating with humans in manufacturing operations. Robot. Comput. Integr. Manuf. 88, 102734 (2024)
Lin, H.-I., Wibowo, F.S., Lathifah, N., Chen, W.-H.: Behavior Analysis for Increasing the Efficiency of Human-Robot Collaboration. Mach. 10(11), 1045 (2022)
Arntz, A., Eimler, S.C., Hoppe, H.U.: A virtual sandbox approach to studying the effect of augmented communication on human-robot collaboration. Front. Robot. AI 8, 728961 (2021)
Handrich, S., Dinges, L., Al-Hamadi, A., Werner, P., Saxen, F., Al Aghbari, Z.: Simultaneous prediction of valence/arousal and emotion categories and its application in an HRC scenario. J. Ambient Intell. Humanized Comput. 12, 57–73 (2021)
Casalino, A., Messeri, C., Pozzi, M., Zanchettin, A.M., Rocco, P., Prattichizzo, D.: Operator awareness in human–robot collaboration through wearable vibrotactile feedback. IEEE Robot. Autom. Lett. 3(4), 4289–4296 (2018)
Vogel, C., Elkmann, N.: Novel safety concept for safeguarding and supporting humans in human-robot shared workplaces with high-payload robots in industrial applications. Dans Proc. Companion 2017 ACM/IEEE Int. Conf. Hum. Robot Interact. pp. 315–316 (2017)
Aivaliotis, S., et al.: An augmented reality software suite enabling seamless human robot interaction. Int. J. Comput. Integr. Manuf. 36(1), 3–29 (2023)
Grushko, S., Vysocký, A., Oščádal, P., Vocetka, M., Novák, P., Bobovský, Z.: Improved mutual understanding for human-robot collaboration: Combining human-aware motion planning with haptic feedback devices for communicating planned trajectory. Sensors 21(11), 3673 (2021)
Dimitropoulos, N., Togias, T., Michalos, G., Makris, S.: Operator support in human–robot collaborative environments using AI enhanced wearable devices. Procedia Cirp 97, 464–469 (2021)
Makris, S., Karagiannis, P., Koukas, S., Matthaiakis, A.-S.: Augmented reality system for operator support in human–robot collaborative assembly. CIRP Ann. 65(1), 61–64 (2016)
Grushko, S., Vysocký, A., Heczko, D., Bobovský, Z.: Intuitive spatial tactile feedback for better awareness about robot trajectory during human–robot collaboration. Sens. 21(17), 5748 (2021)
Scheggi, S., Aggravi, M., Morbidi, F., Prattichizzo, D.: Cooperative human-robot haptic navigation. Dans 2014 IEEE Int. Conf. Robot. Autom. (ICRA), pp. 2693–2698. IEEE (2014)
Sand, O., Büttner, S., Paelke, V., Röcker, C.: Smart. assembly–projection-based augmented reality for supporting assembly workers. Dans Virtual Augmented and Mixed Reality: 8th Int. Conf. VAMR 2016, Held as Part of HCI Int. 2016, Toronto, Canada, July 17-22, 2016 Proc. 8, 643–652 (2016). (Springer)
Hietanen, A., Latokartano, J., Pieters, R., Lanz, M., Kämäräinen, J.-K.: AR-based interaction for safe human-robot collaborative manufacturing. arXiv preprint arXiv:1909.02933 (2019)
Michalos, G., Karagiannis, P., Makris, S., Tokçalar, Ö., Chryssolouris, G.: Augmented reality (AR) applications for supporting human-robot interactive cooperation. Procedia CIRP 41, 370–375 (2016)
Michalos, G., et al.: Seamless human robot collaborative assembly–An automotive case study. Mechatronics 55, 194–211 (2018)
Papanastasiou, S., et al.: Towards seamless human robot collaboration: integrating multimodal interaction. Int. J. Adv. Manuf. Technol. 105, 3881–3897 (2019)
Bolano, G., Roennau, A., Dillmann, R.: Transparent robot behavior by adding intuitive visual and acoustic feedback to motion replanning. Dans 2018 27th IEEE Int. Symposium on Robot and Human Interactive Communication (RO-MAN), pp. 1075–1080. IEEE (2018)
Erjavac, A.J., Iammartino, R., Fossaceca, J.M.: Evaluation of preconditions affecting symptomatic human error in general aviation and air carrier aviation accidents. Reliab. Eng. Syst. Saf. 178, 156–163 (2018)
Lauzier, N., Gosselin, C.: A comparison of the effectiveness of design approaches for human-friendly robots. J. Mech. Des. 137(8), 082302 (2015)
Gombolay, M.C., Wilcox, R.J., Shah, J.A.: Fast scheduling of robot teams performing tasks with temporospatial constraints. IEEE Transact. Robot. 34(1), 220–239 (2018)
Funding
This work received financial support from the Fonds de recherche du Québec—Nature et technologies (FRQNT), under grant number 2020-CO-275043 (Ramy Meziane) and NSERC Discovery grant number RGPIN-2018-06329 (Martin Otis). This project uses the infrastructure obtained by the Ministère de l’Économie et de l’Innovation (MEI) du Quebec, John R. Evans Leaders Fund of the Canadian Foundation for Innovation (CFI) and the Infrastructure Operating Fund (FEI) under the project number 35395.
Author information
Authors and Affiliations
Contributions
Conceptualization, G.V.T.D. and M.O.; methodology, G.V.T.D, and M.O.; software, G.V.T.D; validation, G.V.T.D.; formal analysis, G.V.T.D.; investigation, G.V.T.D.; resources, M.O.; data curation, G.V.T.D.; writing—original draft preparation, G.V.T.D.; writing—review and editing, G.V.T.D., M.O.; visualization, G.V.T.D. and M.O.; supervision, M.O, R.M..; project administration, M.O.; funding acquisition, M.O. and R.M. All authors have read and agreed to the published version of the manuscript.
Corresponding author
Ethics declarations
Conflicts of Interest
The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
One sentence summary: This paper provides a comprehensive review of the current state of the literature on human and robots behavior when interacting in the factory floor.
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
About this article
Cite this article
Tchane Djogdom, G.V., Otis, M.JD. & Meziane, R. A Theoretical Foundation for Erroneous Behavior in Human–Robot Interaction. J Intell Robot Syst 111, 23 (2025). https://doi.org/10.1007/s10846-025-02221-8
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s10846-025-02221-8