Abstract
The paper studies Heyting algebras within the framework of computable structure theory. We prove that the class K containing all Heyting algebras with distinguished atoms and coatoms is complete in the sense of the work of Hirschfeldt et al. (Ann Pure Appl Logic 115(1-3):71-113, 2002). This shows that the class K is rich from the computability-theoretic point of view: for example, every possible degree spectrum can be realized by a countable structure from K. In addition, there is no simple syntactic characterization of computably categorical members of K (i.e., structures from K possessing a unique computable copy, up to computable isomorphisms).


Similar content being viewed by others
References
Alaev, P. E. (2012). Computably categorical Boolean algebras enriched by ideals and atoms. Annals of Pure and Applied Logic, 163(5), 485–499.
Ash, C. J., & Knight, J. F. (2000). Computable structures and the hyperarithmetical hierarchy, studies in Logic and the foundations of mathematics. Amsterdam: Elsevier Science B.V.
Balbes, R., & Dwinger, P. (1974). Distributive lattices. Columbia: Univ. Missouri Press.
Bazhenov, N. (2016). Categoricity spectra for polymodal algebras. Studia Logica, 104(6), 1083–1097.
Bazhenov, N. (2019). Computable contact algebras. Fundamenta Informaticae, 167(4), 257–269.
Bazhenov, N. (2021a). On computability-theoretic properties of Heyting algebras. In: Ghosh, S., Ramanujam, R. (eds) ICLA 2021 Proceedings 9th Indian conference on logic and its applications. March 4–7, 2021, pp 25–29
Bazhenov, N. A. (2017). Effective categoricity for distributive lattices and Heyting algebras. Lobachevskii Journal of Mathematics, 38(4), 600–614.
Bazhenov, N. A. (2021). Categoricity spectra of computable structures. Journal of Mathematical Sciences, 256(1), 34–50.
Downey, R. G., Kach, A. M., Lempp, S., Lewis-Pye, A. E. M., Montalbán, A., & Turetsky, D. D. (2015). The complexity of computable categoricity. Advances in Mathematics, 268, 423–466.
Ershov, Y. L., & Goncharov, S. S. (2000). Constructive models. New York: Kluwer Academic/Plenum Publishers.
Eršov, J. L. (1977). Theorie der Numerierungen III. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 23(19–24), 289–371.
Esakia, L. (2019). Heyting algebras. In G. Bezhanishvili & W. H. Holliday (Eds.), Duality theory trends in logic. Cham: Springer.
Fokina, E. B., Harizanov, V., & Melnikov, A. (2014). Computable model theory. Lecture notes in logic. In R. Downey (Ed.), Turing’s legacy: Developments from turing’s ideas in logic (pp. 124–194). Cambridge University Press.
Franklin, J. N. Y. (2017). Strength and weakness in computable structure theory. In A. R. Day, M. R. Fellows, N. Greenberg, B. Khoussainov, A. G. Melnikov, & F. A. Rosamond (Eds.), Computability and complexity (pp. 302–323). Springer.
Fröhlich, A., & Shepherdson, J. C. (1956). Effective procedures in field theory. Philosophical Transactions of the Royal Society of London Ser A, 248(950), 407–432.
Goncharov, S. S. (1980). Problem of the number of non-self-equivalent constructivizations. Algebra and Logic, 19(6), 401–414.
Goncharov, S. S., & Dzgoev, V. D. (1980). Autostability of models. Algebra and Logic, 19(1), 28–37.
Goncharov, S. S., Lempp, S., & Solomon, R. (2003). The computable dimension of ordered abelian groups. Advances in Mathematics, 175(1), 102–143.
Harizanov, V. S. (1998). Pure computable model theory. Handbook of recursive mathematics. Studies in logic and the foundations of mathematics (pp. 3–114). Amsterdam: Elsevier.
Hirschfeldt, D. R., Khoussainov, B., Shore, R. A., & Slinko, A. M. (2002). Degree spectra and computable dimensions in algebraic structures. Annals of Pure and Applied Logic, 115(1–3), 71–113.
Jockusch, C. G., Jr., & Soare, R. I. (1994). Boolean algebras, stone spaces, and the iterated turing jump. Journal of Symbolic Logic, 59(4), 1121–1138.
Kalimullin, I. S., Selivanov, V. L., & Frolov, A. N. (2021). Degree spectra of structures. Journal of Mathematical Sciences, 256(2), 143–159.
Khoussainov, B., & Kowalski, T. (2012). Computable isomorphisms of Boolean algebras with operators. Studia Logica, 100(3), 481–496.
Knight, J. F. (1986). Degrees coded in jumps of orderings. Journal of Symbolic Logic, 51(4), 1034–1042.
Knight, J. F., & Stob, M. (2000). Computable Boolean algebras. Journal of Symbolic Logic, 65(4), 1605–1623.
Kogabaev, N. (2017). Freely generated projective planes with finite computable dimension. Algebra and Logic, 55(6), 461–484.
Mal’tsev, A. I. (1961). Constructive algebras. I. Russian Mathematical Surveys, 16(3), 77–129.
Mal’tsev, A. I. (1962). On recursive abelian groups. Soviet Mathematics Doklady, 3, 1431–1434.
Miller, R. (2005). The computable dimension of trees of infinite height. Journal of Symbolic Logic, 70(1), 111–141.
Miller, R., Poonen, B., Schoutens, H., & Shlapentokh, A. (2018). A computable functor from graphs to fields. Journal of Symbolic Logic, 83(1), 326–348.
Montalbán, A. (2008). On the triple jump of the set of atoms of a Boolean algebra. Proceedings of the American Mathematical Society, 136(7), 2589–2595.
Montalbán, A. (2014). Computability theoretic classifications for classes of structures. In: Jang, S. Y., Kim, Y. R., Lee, D., Yie, I. (eds) Proceedings of the international congress of mathematicians — Seoul 2014. Vol. II, Kyung Moon Sa, Seoul, pp. 79–101
Remmel, J. B. (1981). Recursive Boolean algebras with recursive atoms. Journal of Symbolic Logic, 46(3), 595–616.
Remmel, J. B. (1981). Recursive isomorphism types of recursive Boolean algebras. Journal of Symbolic Logic, 46(3), 572–594.
Remmel, J. B. (1981). Recursively categorical linear orderings. Proceedings of the American Mathematical Society, 83(2), 387–391.
Remmel, J. B. (1989). Recursive Boolean algebras. In J. D. Monk & R. Bonnet (Eds.), Handbook of Boolean algebras (pp. 1097–1165). Amsterdam: North-Holland.
Richter, L. J. (1977). Degrees of unsolvability of models. PhD thesis, University of Illinois at Urbana-Champaign
Richter, L. J. (1981). Degrees of structures. Journal of Symbolic Logic, 46(4), 723–731.
Soare, R. I. (2016). Turing computability. Theory and applications. Berlin: Springer.
Turlington, A. (2010). Computability of Heyting algebras and distributive lattices. PhD thesis, University of Connecticut, Storrs
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
The work was supported by the Ministry of Education and Science of the Republic of Kazakhstan, Grant AP08856493 “Positive graphs and computable reducibility on them as mathematical model of databases”. The author is also partially supported by RFBR, project number 20-31-70006.
Rights and permissions
About this article
Cite this article
Bazhenov, N. Computable Heyting Algebras with Distinguished Atoms and Coatoms. J of Log Lang and Inf 32, 3–18 (2023). https://doi.org/10.1007/s10849-022-09371-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10849-022-09371-0