Abstract
This paper generalizes the recently proposed sinusoidal model used for modeling the variation of texture features under changes in illumination direction, so that it can handle surfaces which are very rough and of variable albedo. It deals with the problem of identifying the direction of illumination of a rough surface from a single image, using information from a photometric stereo set of images. In addition, it presents methodology for classifying the texture of a rough surface, using generalized normals that capture both shape and albedo information. It assumes that the surface is Lambertian and is presented to the camera in a fronto-parallel view.
Similar content being viewed by others
References
Barsky, S., Petrou, M.: The 4-source photometric stereo technique for 3-dimensional surfaces in the presence of highlights and shadows. IEEE Trans. Pattern Anal. Mach. Intell. 25(10), 1239–1252 (2003)
Chantler, M.J.: Why illuminant direction is fundamental to texture analysis. IEE Proc. Vis. Image Signal Process. 142(4), 199–206 (1995)
Chantler, M.J., McGunnigle, G., Penirschke, A., Petrou, M.: Estimating lighting direction and classifying textures. In: Rosin, P.L., Marshall, D. (eds.) BMVC2002, British Machine Vision Conference, Cardiff, 2–5 September 2002, vol. 2, pp. 737–746 (2002), ISBN 1-901725-19-7
Chantler, M.J., Schmidt, M., Petrou, M., McGunnigle, G.: The effect of illuminant rotation on texture filters: Lissajous’s ellipses. In: ECCV2002, European Conference on Computer Vision, August 2002, vol. III, pp. 289–303 (2002)
Chantler, M.J., Petrou, M., Penirsche, A., Schmidt, M., McGunnigle, G.: Classifying surface texture while simultaneously estimating illumination direction. Int. J. Comput. Vis. 62, 83–96 (2005)
Coleman, E.N., Jain, R.: Obtaining 3-dimensional shape of textured and specular surfaces using four-source photometry. Comput. Graph. Image Process. 18, 309–328 (1982)
Cula, O.G., Dana, K.J.: 3D texture recognition using bidirectional feature histograms. Int. J. Comput. Vis. 59(1), 33–60 (2004)
Dana, K.J., Nayar, S.K.: Histogram model for 3D textures. In: IEEE Conference on Computer Vision and Pattern Recognition, June 1998, pp. 618–624 (1998)
Dana, K.J., Nayar, S.K.: Correlation model for 3D textures. In: ICCV99: IEEE International Conference on Computer Vision, pp. 1061–1067 (1999)
Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. In: IEEE Conference on Computer Vision and Pattern Recognition, June 1997, pp. 151–157 (1997)
van Ginneken, B., Koenderink, J.J., Dana, K.J.: Texture histograms as a function of irradiation and viewing direction. Int. J. Comput. Vis. 31(2–3), 169–184 (1999)
Healey, G., Wang, L.: Illumination-invariant recognition of texture in color images. J. Opt. Soc. Am. A 12(9), 1877–1883 (1995)
Kay, G., Caelly, T.: Estimating the parameters of an illumination model using photometric stereo. Graph. Models Image Process. 57(5), 365–388 (1995)
Koenderink, J.J., Pont, S.C.: Irradiation direction from texture. J. Opt. Soc. Am. A 20(10), 1875–1882 (2003)
Koenderink, J.J., van Doorn, A.J., Kappers, A.M.L., te Pas, S.F., Pont, S.C.: Illumination direction from texture shading. J. Opt. Soc. Am. A 20(6), 987 (2003)
Kube, P., Pentland, A.P.: On the imaging of fractal surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 10(5), 704–707 (1988)
Laws, K.I.: Textured image segmentation. PhD thesis, Electrical Engineering, University of Southern California (2003)
Leung, T., Malik, J.: Representing and recognising the visual appearance of materials using three-dimensional textons. Int. J. Comput. Vis. 1(43), 26–44 (2001)
Liu, X., Yu, Y., Shum, H.-Y.: Synthesizing bidirectional texture functions for real-world surfaces. In: SIGGRAPH, pp. 97–106 (2001)
Llado, X., Petrou, M., Marti, J.: Texture recognition by surface rendering. Opt. Eng. J. 44(3), 0370011 (2005)
Llado, X., Oliver, A., Petrou, M., Freixenet, J., Marti, J.: Simultaneous surface texture classification and illumination tilt angle prediction. In: Harvey, R., Bangham, J.A. (eds.) Proceedings of the British Machine Vision Conference, Norwich, England, 8–11 September 2003, pp. 789–798 (2003)
Nayar, S.K., Ikeuchi, K., Kanade, T.: Determining shape and reflectance of hybrid surfaces by photometric sampling. IEEE Trans. Robot. Autom. 6(4), 418–431 (1990)
Penirschke, A., Chantler, M.J., Petrou, M.: Illuminant rotation invariant classification of 3D surface textures using Lissajous‘s ellipses. In: Texture2002, The 2nd International Workshop on Texture Analysis and Synthesis, June 2002, pp. 101–107 (2002)
Smith, M.L.: The analysis of surface texture using photometric stereo acquisition and gradient space domain mapping. Image Vis. Comput. 17, 1009–1019 (1999)
Smith, M.L., Hill, T., Smith, G.: Surface texture analysis based upon the visually acquired perturbation of surface normals. Image Vis. Comput. 15, 949–955 (1997)
Smith, M.L.: Surface Inspection Techniques—Using the Integration of Innovative Machine Vision and Graphical Modelling Techniques. Professional Engineering Publishing (2000). ISBN 1-86058-292-3
Suen, P., Healey, G.: The analysis and recognition of real-world textures in three dimensions. IEEE Trans. Pattern Anal. Mach. Intell. 22(5), 491–503 (2000)
Tagare, H.D., de Figueiredo, R.J.P.: A theory of photometric stereo for a class of diffuse non-Lambertian surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 13(2), 133–152 (1991)
Tong, X., Zhang, J., Liu, L., Wang, X., Guo, B., Shum, H.-Y.: Synthesizing bidirectional texture functions on arbitrary surfaces. In: SIGGRAPH, pp. 665–672 (2002)
Varma, M., Zisserman, A.: Texture classification: are filter banks necessary? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, June 2003, vol. 2, pp. 691–698 (2003)
Woodham, R.J.: Photometric method for determining surface orientation from multiple images. Opt. Eng. 19(1), 139–144 (1980)
Woodham, R.J., Iwahori, Y., Barman, R.A.: Photometric stereo: Lambertian reflectance and light sources with unknown direction and strength. Technical report, University of British Columbia Department of Computing Science (1991)
http://www.macs.hw.ac.uk/texturelab/database/Photex/index.htm
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Barsky, S., Petrou, M. Surface Texture Using Photometric Stereo Data: Classification and Direction of Illumination Detection. J Math Imaging Vis 29, 185–204 (2007). https://doi.org/10.1007/s10851-007-0031-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-007-0031-8