Skip to main content

Recognising Algebraic Surfaces from Two Outlines

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Photographic outlines of 3 dimensional solids are robust and rich in information useful for surface reconstruction. This paper studies algebraic surfaces viewed from 2 cameras with known intrinsic and extrinsic parameters. It has been known for some time that for a degree d=2 (quadric) algebraic surface there is a 1-parameter family of surfaces that reproduce the outlines. When the algebraic surface has degree d>2, we prove a new result: that with known camera geometry it is possible to completely reconstruct an algebraic surface from 2 outlines i.e. the coefficients of its defining polynomial can be determined in a known coordinate frame. The proof exploits the existence of frontier points, which are calculable from the outlines. Examples and experiments are presented to demonstrate the theory and possible applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brand, M., Kang, K., Cooper, D.B.: Algebraic solution for the visual hull. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. I, pp. 30–35. Vancouver, Canada (2004)

  2. Canny, J.F.: Finding edges and line in images. Master’s thesis, MIT AI Lab. (1983)

  3. Cipolla, R.: Active Visual Inference of Surface Shape. Springer, New York (1996)

    Google Scholar 

  4. Collings, S.: Frontier points: Theory and methods for computer vision. Ph.D. thesis, University of Western Australia Schools of Mathematics and Statistics and Computer Science and Software Engineering (2007). www.maths.uwa.edu.au/~scolling/Thesis

  5. Collings, S., Kozera, R., Noakes, L.: Shape recovery of a strictly convex solid from n-views. In: Proceedings of the International Conference Computer Vision and Graphics, pp. 57–64. Warsaw, Poland (2005)

  6. Collings, S., Noakes, L., Kozera, R.: The restricted correspondence problem: Curvature at frontier points and ellipsoids from two frames (2007, submitted)

  7. Cross, G.: Surface reconstruction from image sequences. Ph.D. thesis, University of Oxford, Department of Engineering and Science (2000)

  8. Cross, G., Zisserman, A.: Quadric reconstruction from dual space geometry. In: Proceedings of the International Conference on Computer Vision, pp. 25–31. Bombay, India. IEEE (1998)

  9. D’Almeida, J.: Courbe de ramification de la projectoin su P2 d’une surface de P3. Duke Math. J. 65(2), 229–233 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Faugeras, O.: Three-Dimensional Computer Vision. MIT Press, Cambridge (1993)

    Google Scholar 

  11. Forsyth, D.A.: Recognizing algebraic surfaces from their outlines. Int. J. Comput. Vis. 18(1), 21–40 (1996)

    Article  MathSciNet  Google Scholar 

  12. Fraleigh, J.B.: A First Course in Abstract Algebra. Addison-Wesley, Reading (1994)

    Google Scholar 

  13. Fulton, W.: Intersection Theory. Springer, Berlin (1984)

    MATH  Google Scholar 

  14. Giblin, P.J., Weiss, R.S.: Epipolar fields on surfaces. In: Proceedings of the European Conference on Computer Vision. LNCS, vol. 1, pp. 14–23. Springer, Berlin (1994)

    Google Scholar 

  15. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  16. Hartshorne, R.: Algebraic Geometry. Springer, Berlin (1977)

    MATH  Google Scholar 

  17. Kang, K., Tarel, J.-P., Fishman, R., Cooper, D.B.: A linear dual-space approach to 3D surface reconstruction from occluding contours using algebraic surfaces. In: Proceedings of the International Conference on Computer Vision, vol. I, pp. 198–204. Vancouver, Canada (2001)

  18. Karl, W.C., Verghese, G.C., Willsky, A.S.: Reconstructing ellipsoids from projections. Graph. Model. Image Process. 56(2), 124–139 (1994)

    Article  Google Scholar 

  19. Liang, C., Wong, K.K.: Complex 3D shape recovery using a dual-space approach. In: Proceedings of the International Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 878–884 (2005)

  20. Ma, S.D., Chen, X.: Reconstruction of quadric surface from occluding contour. In: Proceedings of the International Conference on Pattern Recognition, pp. 27–31. IEEE (1994)

  21. Marr, D., Hildreth, E.C.: Theory of edge detection. In: Proceedings of the Royal Society, vol. B, pp. 187–217 (1980)

  22. Marsden, J.E.: Elementary Classical Analysis. Freeman, San Francisco (1974)

    MATH  Google Scholar 

  23. Porill, J., Pollard, S.: Curve matching and stereo callibration. Image Vis. Comput. 9(1), 45–50 (1991)

    Article  Google Scholar 

  24. Rieger, J.H.: Three-dimensional motion from fixed points of a deforming profile curve. Opt. Lett. 11(3), 123–125 (1986)

    Article  Google Scholar 

  25. Shashua, A., Toelg, S.: The quadric reference surface: theory and applications. Int. J. Comput. Vis. 23(2), 185–198 (1997)

    Article  Google Scholar 

  26. Shashuar, A.: Q-warping: direct computation of quadratic reference surfaces. Trans. Pattern Recognit. Mach. Intell. 23(8), 920–925 (2001)

    Article  Google Scholar 

  27. Strang, G.: Introduction to Linear Algebra. Wellesley-Cambridge Press, Cambridge (1993)

    MATH  Google Scholar 

  28. Szeliski, R.: Prediction error as a quality metric for motion and stereo. Int. J. Comput. Vis., vol. 2, pp. 781–788 (1999)

  29. Taubin, G., Cukierman, F., Sullivan, S., Ponce, J., Kriegman, D.J.: Parameterized families of polynomials for bounded algebraic curve fitting. Trans. Pattern Anal. Mach. Intell. 16(3), 287–303 (1994)

    Article  MATH  Google Scholar 

  30. Vogiatzis, G., Favaro, P., Cipolla, R.: Using frontier points to recover shape, reflectance and illumination. In: Proceedings of the International Conference on Computer Vision, pp. 228–235. Beijing, China. IEEE Computer Society (2005)

  31. Wee, C.E., Goldman, R.N.: Elimination and resultants. part 1: Elimination and bivariate resultants. Comput. Graph. Appl. 15(1), 69–77 (1995)

    Article  Google Scholar 

  32. Wee, C.E., Goldman, R.N.: Elimination and resultants, part 2: Multivariate resultants. Comput. Graph. Appl. 15(2), 60–69 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Collings.

Additional information

Simon Collings is partially funded by the Interactive Virtual Environments Centre (IVEC).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collings, S., Kozera, R. & Noakes, L. Recognising Algebraic Surfaces from Two Outlines. J Math Imaging Vis 30, 181–193 (2008). https://doi.org/10.1007/s10851-007-0050-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-007-0050-5

Keywords