Abstract
In this paper, a new framework for the tracking of closed curves and their associated motion fields is described. The proposed method enables a continuous tracking along an image sequence of both a deformable curve and its velocity field. Such an approach is formalized through the minimization of a global spatio-temporal continuous cost functional, w.r.t a set of variables representing the curve and its related motion field. The resulting minimization process relies on optimal control approach and consists in a forward integration of an evolution law followed by a backward integration of an adjoint evolution model. This latter pde includes a term related to the discrepancy between the current estimation of the state variable and discrete noisy measurements of the system. The closed curves are represented through implicit surface modeling, whereas the motion is described either by a vector field or through vorticity and divergence maps depending on the kind of targeted applications. The efficiency of the approach is demonstrated on two types of image sequences showing deformable objects and fluid motions.
Similar content being viewed by others
References
Amiaz, T., Kiryati, N.: Piecewise-smooth dense optical flow via level sets. Int. J. Comput. Vis. 68(2), 111–124 (2006)
Anderson, B., Moore, J.: Optimal Filtering. Prentice Hall, Englewood Cliffs (1979)
Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)
Bartesaghi, A., Sapiro, G.: Tracking of moving objects under severe and total occlusions. In Proc. Int. Conf. Image Processing, ICIP’05, vol. 1, pp. 301–304 (2005)
Beg, M., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)
Bennet, A.: Inverse Methods in Physical Oceanography. Cambridge University Press, Cambridge (1992)
Blake, A., Isard, M.: Active Contours. Springer, London (1998)
Bouttier, F., Courtier, P.: Data Assimilation Concepts and Methods. ECMWF Meteorological Training Course Lecture Series (1999)
Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Proc. Eur. Conf. Comput. Vis., ECCV’04, Prague, Czech Republic, pp. 25–36. Springer, Berlin (2004)
Brox, T., Bruhn, A., Weickert, J.: Variational motion segmentation with level sets. In Proc. Eur. Conf. Comput. Vis., vol. 1, pp. 471–483 (2006)
Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005)
Carlier, J., Wieneke, B.: Report on production and diffusion of fluid mechanics images and data. Technical report, Fluid Project deliverable 1.2 (2005)
Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Corpetti, T., Heitz, D., Arroyo, G., Mémin, E., Santa-Cruz, A.: Fluid experimental flow estimation based on an optical-flow scheme. Int. J. Exp. Fluid 40(1), 80–97 (2006)
Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 365–380 (2002)
Courtier, P., Talagrand, O.: Variational assimilation of meteorological observations with the direct and adjoint shallow-water equations. Tellus 42, 531–549 (1990)
Cremers, D.: Dynamical statistical shape priors for level set based tracking. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1262–1273 (2006)
Cremers, D., Soatto, S.: Variational space-time motion segmentation. In: Proc. IEEE Int. Conf. Comput. Vis. ICCV’03, vol. 2, pp. 886–892 (2003)
Cremers, D., Soatto, S.: Motion competition: a variational framework for piecewise parametric motion segmentation. Int. J. Comput. Vis. 62(3), 249–265 (2005)
Cremers, D., Tischhäuser, F., Weickert, J., Schnoerr, C.: Diffusion snakes: introducing statistical shape knowledge into the Mumford-Shah functional. Int. J. Comput. Vis. 50(3), 295–313 (2002)
Cuzol, A., Hellier, P., Memin, E.: A low dimensional fluid motion estimator. Int. J. Comput. Vis. 75(3), 329–349 (2007)
Dambreville, S., Rathi, Y., Tannenbaum, A.: Tracking deformable objects with unscented Kalman filtering and geometric active contours. In: American Control Conf., ACC’06, June 2006
Faugeras, B.: Assimilation variationnelle de données dans un modèle couplé océan-biogéochimie. PhD thesis, Université Joseph-Fourier–Grenoble I, Octobre 2002
Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Trans. Image Process. 10(10), 1467–1475 (2001)
Héas, P., Mémin, E., Papadakis, N., Szantai, A.: Layered estimation of atmospheric mesoscale dynamics from satellite imagery. IEEE Trans. Geosci. Remote Sens. 45(12), 4087–4104 (2007)
Héas, P., Papadakis, N., Mémin, E.: Time-consistent estimators of 2d/3d motion of atmospheric layers from pressure images. Technical Report 6292, INRIA, September 2007
Jackson, J., Yezzi, A., Soatto, S.: Tracking deformable moving objects under severe occlusions. In: IEEE Conference on Decision and Control, December 2004
Kimmel, R., Bruckstein, A.M.: Tracking level sets by level sets: a method for solving the shape from shading problem. Comput. Vis. Image Underst. 62(1), 47–58 (1995)
Kohlberger, T., Mémin, E., Schnörr, C.: Variational dense motion estimation using the Helmholtz decomposition. In: Proc. Int. Conf. on Scale-Space and PDE methods in Comput. Vis., Scale-Space’03, Isle of Skye, UK, pp. 432–448 (2003)
Kurganov, A., Levy, D.: A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. 22(4), 1461–1488 (2000)
Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)
Le Dimet, F.-X., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38(A), 97–110 (1986)
Leventon, M., Grimson, E., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proc. IEEE Comput. Vis. and Pat. Rec. CVPR’00 (2000)
Li, Z., Navon, I.M.: Optimality of 4d-var and its relationship with the Kalman filter and Kalman smoother. Q. J. R. Meteorol. Soc. 127(572), 661–683 (2001)
Lions, J.: Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles. Dunod, Paris (1968)
Lions, J.: Optimal Control of Systems Governed by PDEs. Springer, New York (1971)
Mansouri, A.: Region tracking via level set PDEs without motion computation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 947–961 (2003)
Martin, P., Réfrégier, P., Goudail, F., Guérault, F.: Influence of the noise model on level set active contours segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 799–803 (2004)
Mémin, E., Pérez, P.: Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans. Image Process. 7(5), 703–719 (1998)
Niethammer, M., Tannenbaum, A.: Dynamic geodesic snakes for visual tracking. In: Proc. IEEE Comput. Vis. and Pat. Rec. CVPR’04, vol. 1, pp. 660–667 (2004)
Niethammer, M., Vela, P., Tannenbaum, A.: Geometric observers for dynamically evolving curves. In: Proc. Conf. Decision and Control Eur. Control Conf. CDC-ECC’05, pp. 6071–6077 (2005)
Nir, T., Bruckstein, A., Kimmel, R.: Over parameterized optical-flow. Technical Report CIS-2006-05, Technion—Israel Institute of Technology (2006)
Odobez, J.-M., Bouthemy, P.: Robust multiresolution estimation of parametric motion models. J. Vis. Commun. Image Represent. 6(4), 348–365 (1995)
Oksendal, B.: Stochastic Differential Equations. Springer, Berlin (1998)
Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79, 12–49 (1988)
Papadakis, N., Mémin, E.: A variational method for joint tracking of curve and motion. Research Report 6283, INRIA, September 2007
Papadakis, N., Mémin, E.: Variational optimal control technique for the tracking of deformable objects. In: Proc. IEEE Int. Conf. Comput. Vis., ICCV’07, Rio de Janeiro, Brazil, October 2007
Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. Int. J. Comput. Vis. 67(2), 141–158 (2005)
Paragios, N.: A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans. Med. Imaging 22(6), 773–776 (2003)
Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J. Vis. Commun. Image Represent. 13, 249–268 (2002)
Peterfreund, N.: Robust tracking of position and velocity with Kalman snakes. IEEE Trans. Pattern Anal. Mach. Intell. 21(6), 564–569 (1999)
Rathi, Y., Vaswani, N., Tannenbaum, A., Yezzi, A.: Tracking deforming objects using particle filtering for geometric active contours. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1470–1475 (2007)
Ruhnau, P., Stahl, A., Schnörr, C.: Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization. Meas. Sci. Technol. 18(3), 755–763 (2007)
Sethian, J.: Level Set Methods. Cambridge University Press, Cambridge (1996)
Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)
Soatto, S., Yezzi, A., Duci, A.: Region matching and tracking under deformations and occlusions. In: Geometric Level Sets Methods in Imaging Vision and Graphics. Springer, Berlin (2003)
Talagrand, O., Courtier, P.: Variational assimilation of meteorological observations with the adjoint vorticity equation, I: theory. Q. J. R. Meteorol. Soc. 113, 1311–1328 (1987)
Trémolet, Y.: Incremental 4d-var convergence study. Tellus A 59(5), 706–718 (2007)
Weickert, J., Schnörr, C.: Variational optic-flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging Vis. 14(3), 245–255 (2001)
Yezzi, A., Zöllei, L., Kapur, T.: A variational framework for joint segmentation and registration. In: MMBIA, pp. 44–51 (2001)
Yuan, J., Schnörr, C., Mémin, E.: Discrete orthogonal decomposition and variational fluid flow estimation. J. Math. Imaging Vis. 28(1), 67–80 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Papadakis, N., Mémin, E. A Variational Technique for Time Consistent Tracking of Curves and Motion. J Math Imaging Vis 31, 81–103 (2008). https://doi.org/10.1007/s10851-008-0069-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-008-0069-2