Skip to main content
Log in

A Variational Technique for Time Consistent Tracking of Curves and Motion

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, a new framework for the tracking of closed curves and their associated motion fields is described. The proposed method enables a continuous tracking along an image sequence of both a deformable curve and its velocity field. Such an approach is formalized through the minimization of a global spatio-temporal continuous cost functional, w.r.t a set of variables representing the curve and its related motion field. The resulting minimization process relies on optimal control approach and consists in a forward integration of an evolution law followed by a backward integration of an adjoint evolution model. This latter pde includes a term related to the discrepancy between the current estimation of the state variable and discrete noisy measurements of the system. The closed curves are represented through implicit surface modeling, whereas the motion is described either by a vector field or through vorticity and divergence maps depending on the kind of targeted applications. The efficiency of the approach is demonstrated on two types of image sequences showing deformable objects and fluid motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amiaz, T., Kiryati, N.: Piecewise-smooth dense optical flow via level sets. Int. J. Comput. Vis. 68(2), 111–124 (2006)

    Article  Google Scholar 

  2. Anderson, B., Moore, J.: Optimal Filtering. Prentice Hall, Englewood Cliffs (1979)

    MATH  Google Scholar 

  3. Barron, J., Fleet, D., Beauchemin, S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)

    Article  Google Scholar 

  4. Bartesaghi, A., Sapiro, G.: Tracking of moving objects under severe and total occlusions. In Proc. Int. Conf. Image Processing, ICIP’05, vol. 1, pp. 301–304 (2005)

  5. Beg, M., Miller, M., Trouvé, A., Younes, L.: Computing large deformation metric mappings via geodesic flows of diffeomorphisms. Int. J. Comput. Vis. 61(2), 139–157 (2005)

    Article  Google Scholar 

  6. Bennet, A.: Inverse Methods in Physical Oceanography. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  7. Blake, A., Isard, M.: Active Contours. Springer, London (1998)

    Google Scholar 

  8. Bouttier, F., Courtier, P.: Data Assimilation Concepts and Methods. ECMWF Meteorological Training Course Lecture Series (1999)

  9. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Proc. Eur. Conf. Comput. Vis., ECCV’04, Prague, Czech Republic, pp. 25–36. Springer, Berlin (2004)

    Google Scholar 

  10. Brox, T., Bruhn, A., Weickert, J.: Variational motion segmentation with level sets. In Proc. Eur. Conf. Comput. Vis., vol. 1, pp. 471–483 (2006)

  11. Bruhn, A., Weickert, J., Schnörr, C.: Lucas/Kanade meets Horn/Schunck: combining local and global optic flow methods. Int. J. Comput. Vis. 61(3), 211–231 (2005)

    Article  Google Scholar 

  12. Carlier, J., Wieneke, B.: Report on production and diffusion of fluid mechanics images and data. Technical report, Fluid Project deliverable 1.2 (2005)

  13. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  14. Corpetti, T., Heitz, D., Arroyo, G., Mémin, E., Santa-Cruz, A.: Fluid experimental flow estimation based on an optical-flow scheme. Int. J. Exp. Fluid 40(1), 80–97 (2006)

    Article  Google Scholar 

  15. Corpetti, T., Mémin, E., Pérez, P.: Dense estimation of fluid flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 365–380 (2002)

    Article  Google Scholar 

  16. Courtier, P., Talagrand, O.: Variational assimilation of meteorological observations with the direct and adjoint shallow-water equations. Tellus 42, 531–549 (1990)

    Article  Google Scholar 

  17. Cremers, D.: Dynamical statistical shape priors for level set based tracking. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1262–1273 (2006)

    Article  Google Scholar 

  18. Cremers, D., Soatto, S.: Variational space-time motion segmentation. In: Proc. IEEE Int. Conf. Comput. Vis. ICCV’03, vol. 2, pp. 886–892 (2003)

  19. Cremers, D., Soatto, S.: Motion competition: a variational framework for piecewise parametric motion segmentation. Int. J. Comput. Vis. 62(3), 249–265 (2005)

    Article  Google Scholar 

  20. Cremers, D., Tischhäuser, F., Weickert, J., Schnoerr, C.: Diffusion snakes: introducing statistical shape knowledge into the Mumford-Shah functional. Int. J. Comput. Vis. 50(3), 295–313 (2002)

    Article  MATH  Google Scholar 

  21. Cuzol, A., Hellier, P., Memin, E.: A low dimensional fluid motion estimator. Int. J. Comput. Vis. 75(3), 329–349 (2007)

    Article  Google Scholar 

  22. Dambreville, S., Rathi, Y., Tannenbaum, A.: Tracking deformable objects with unscented Kalman filtering and geometric active contours. In: American Control Conf., ACC’06, June 2006

  23. Faugeras, B.: Assimilation variationnelle de données dans un modèle couplé océan-biogéochimie. PhD thesis, Université Joseph-Fourier–Grenoble I, Octobre 2002

  24. Goldenberg, R., Kimmel, R., Rivlin, E., Rudzsky, M.: Fast geodesic active contours. IEEE Trans. Image Process. 10(10), 1467–1475 (2001)

    Article  MathSciNet  Google Scholar 

  25. Héas, P., Mémin, E., Papadakis, N., Szantai, A.: Layered estimation of atmospheric mesoscale dynamics from satellite imagery. IEEE Trans. Geosci. Remote Sens. 45(12), 4087–4104 (2007)

    Article  Google Scholar 

  26. Héas, P., Papadakis, N., Mémin, E.: Time-consistent estimators of 2d/3d motion of atmospheric layers from pressure images. Technical Report 6292, INRIA, September 2007

  27. Jackson, J., Yezzi, A., Soatto, S.: Tracking deformable moving objects under severe occlusions. In: IEEE Conference on Decision and Control, December 2004

  28. Kimmel, R., Bruckstein, A.M.: Tracking level sets by level sets: a method for solving the shape from shading problem. Comput. Vis. Image Underst. 62(1), 47–58 (1995)

    Article  Google Scholar 

  29. Kohlberger, T., Mémin, E., Schnörr, C.: Variational dense motion estimation using the Helmholtz decomposition. In: Proc. Int. Conf. on Scale-Space and PDE methods in Comput. Vis., Scale-Space’03, Isle of Skye, UK, pp. 432–448 (2003)

  30. Kurganov, A., Levy, D.: A third-order semidiscrete central scheme for conservation laws and convection-diffusion equations. SIAM J. Sci. Comput. 22(4), 1461–1488 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kurganov, A., Tadmor, E.: New high-resolution central schemes for nonlinear conservation laws and convection-diffusion equations. J. Comput. Phys. 160(1), 241–282 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  32. Le Dimet, F.-X., Talagrand, O.: Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38(A), 97–110 (1986)

    Google Scholar 

  33. Leventon, M., Grimson, E., Faugeras, O.: Statistical shape influence in geodesic active contours. In: Proc. IEEE Comput. Vis. and Pat. Rec. CVPR’00 (2000)

  34. Li, Z., Navon, I.M.: Optimality of 4d-var and its relationship with the Kalman filter and Kalman smoother. Q. J. R. Meteorol. Soc. 127(572), 661–683 (2001)

    Article  Google Scholar 

  35. Lions, J.: Contrôle Optimal de Systèmes Gouvernés par des Équations aux Dérivées Partielles. Dunod, Paris (1968)

    MATH  Google Scholar 

  36. Lions, J.: Optimal Control of Systems Governed by PDEs. Springer, New York (1971)

    Google Scholar 

  37. Mansouri, A.: Region tracking via level set PDEs without motion computation. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 947–961 (2003)

    Article  Google Scholar 

  38. Martin, P., Réfrégier, P., Goudail, F., Guérault, F.: Influence of the noise model on level set active contours segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 26(6), 799–803 (2004)

    Article  Google Scholar 

  39. Mémin, E., Pérez, P.: Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans. Image Process. 7(5), 703–719 (1998)

    Article  Google Scholar 

  40. Niethammer, M., Tannenbaum, A.: Dynamic geodesic snakes for visual tracking. In: Proc. IEEE Comput. Vis. and Pat. Rec. CVPR’04, vol. 1, pp. 660–667 (2004)

  41. Niethammer, M., Vela, P., Tannenbaum, A.: Geometric observers for dynamically evolving curves. In: Proc. Conf. Decision and Control Eur. Control Conf. CDC-ECC’05, pp. 6071–6077 (2005)

  42. Nir, T., Bruckstein, A., Kimmel, R.: Over parameterized optical-flow. Technical Report CIS-2006-05, Technion—Israel Institute of Technology (2006)

  43. Odobez, J.-M., Bouthemy, P.: Robust multiresolution estimation of parametric motion models. J. Vis. Commun. Image Represent. 6(4), 348–365 (1995)

    Article  Google Scholar 

  44. Oksendal, B.: Stochastic Differential Equations. Springer, Berlin (1998)

    Google Scholar 

  45. Osher, S., Sethian, J.: Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79, 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  46. Papadakis, N., Mémin, E.: A variational method for joint tracking of curve and motion. Research Report 6283, INRIA, September 2007

  47. Papadakis, N., Mémin, E.: Variational optimal control technique for the tracking of deformable objects. In: Proc. IEEE Int. Conf. Comput. Vis., ICCV’07, Rio de Janeiro, Brazil, October 2007

  48. Papenberg, N., Bruhn, A., Brox, T., Didas, S., Weickert, J.: Highly accurate optic flow computation with theoretically justified warping. Int. J. Comput. Vis. 67(2), 141–158 (2005)

    Article  Google Scholar 

  49. Paragios, N.: A level set approach for shape-driven segmentation and tracking of the left ventricle. IEEE Trans. Med. Imaging 22(6), 773–776 (2003)

    Article  Google Scholar 

  50. Paragios, N., Deriche, R.: Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J. Vis. Commun. Image Represent. 13, 249–268 (2002)

    Article  Google Scholar 

  51. Peterfreund, N.: Robust tracking of position and velocity with Kalman snakes. IEEE Trans. Pattern Anal. Mach. Intell. 21(6), 564–569 (1999)

    Article  Google Scholar 

  52. Rathi, Y., Vaswani, N., Tannenbaum, A., Yezzi, A.: Tracking deforming objects using particle filtering for geometric active contours. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1470–1475 (2007)

    Article  Google Scholar 

  53. Ruhnau, P., Stahl, A., Schnörr, C.: Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization. Meas. Sci. Technol. 18(3), 755–763 (2007)

    Article  Google Scholar 

  54. Sethian, J.: Level Set Methods. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  55. Shu, C.-W.: Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws. In: Advanced Numerical Approximation of Nonlinear Hyperbolic Equations. Lecture Notes in Mathematics, vol. 1697, pp. 325–432. Springer, Berlin (1998)

    Chapter  Google Scholar 

  56. Soatto, S., Yezzi, A., Duci, A.: Region matching and tracking under deformations and occlusions. In: Geometric Level Sets Methods in Imaging Vision and Graphics. Springer, Berlin (2003)

    Google Scholar 

  57. Talagrand, O., Courtier, P.: Variational assimilation of meteorological observations with the adjoint vorticity equation, I: theory. Q. J. R. Meteorol. Soc. 113, 1311–1328 (1987)

    Article  Google Scholar 

  58. Trémolet, Y.: Incremental 4d-var convergence study. Tellus A 59(5), 706–718 (2007)

    Article  Google Scholar 

  59. Weickert, J., Schnörr, C.: Variational optic-flow computation with a spatio-temporal smoothness constraint. J. Math. Imaging Vis. 14(3), 245–255 (2001)

    Article  MATH  Google Scholar 

  60. Yezzi, A., Zöllei, L., Kapur, T.: A variational framework for joint segmentation and registration. In: MMBIA, pp. 44–51 (2001)

  61. Yuan, J., Schnörr, C., Mémin, E.: Discrete orthogonal decomposition and variational fluid flow estimation. J. Math. Imaging Vis. 28(1), 67–80 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Papadakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papadakis, N., Mémin, E. A Variational Technique for Time Consistent Tracking of Curves and Motion. J Math Imaging Vis 31, 81–103 (2008). https://doi.org/10.1007/s10851-008-0069-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-008-0069-2

Keywords