Skip to main content
Log in

Probabilistic Models for Shapes as Continuous Curves

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We develop new shape models by defining a standard shape from which we can explain shape deformation and variability. Currently, planar shapes are modelled using a function space, which is applied to data extracted from images. We regard a shape as a continuous curve and identified on the Wiener measure space whereas previous methods have primarily used sparse sets of landmarks expressed in a Euclidean space. The average of a sample set of shapes is defined using measurable functions which treat the Wiener measure as varying Gaussians. Various types of invariance of our formulation of an average are examined in regard to practical applications of it. The average is examined with relation to a Fréchet mean in order to establish its validity. In contrast to a Fréchet mean, however, the average always exists and is unique in the Wiener space. We show that the average lies within the range of deformations present in the sample set. In addition, a measurement, which we call a quasi-score, is defined in order to evaluate “averages” computed by different shape methods, and to measure the overall deformation in a sample set of shapes. We show that the average defined within our model has the least spread compared with methods based on eigenstructure. We also derive a model to compactly express shape variation which comprises the average generated from our model. Some examples of average shape and deformation are presented using well-known datasets and we compare our model to previous work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartle, R.G.: The Elements of Real Analysis. Wiley, New York (1976)

    MATH  Google Scholar 

  2. Beichel, R., Bischof, H., Leberl, F., Sonka, M.: Robust active appearance models and their application to medical image analysis. IEEE Trans. Med. Imaging 24(9), 1151–1169 (2005)

    Article  Google Scholar 

  3. Berthilsson, R., Åström, K.: Extension of affine shape. J. Math. Imaging Vis. 11, 119–136 (1999)

    Article  MATH  Google Scholar 

  4. Bookstein, F.: Size and shape spaces for landmark data in two dimensions. Stat. Sci. 1(2), 181–221 (1986)

    Article  MATH  Google Scholar 

  5. Brechbühler, C., Gerig, G., Kübler, O.: Parameterisation of closed surfaces for 3-D shape description. CVGIP: Image Underst. 61, 154–170 (1995)

    Article  Google Scholar 

  6. Cootes, T.F., Taylor, C.J.: Statistical models of appearance for computer vision. Technical Report, University of Manchester, Manchester M13 9PT, UK (2004)

  7. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  8. Davies, R.H., Cootes, T.F., Taylor, C.J.: A minimum description length approach to statistical shape modelling. In: IPMI 2001. LNCS, vol. 2082, pp. 50–63. Springer, Berlin (2001)

    Google Scholar 

  9. Davies, R.H., Twining, C., Cootes, T.F., Taylor, C.J.: A minimum description length approach to statistical shape modelling. IEEE Trans. Med. Imaging 21, 525–537 (2002)

    Article  Google Scholar 

  10. Dryden, I.L., Mardia, K.V.: General shape distributions in a plane. Adv. Appl. Probab. (SGSA) 23, 259–276 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  11. Ericsson, A., Åström, K.: An affine invariant deformable shape representation for general curves. In: ICCV 2003 (2003)

  12. Fletcher, P.T., Joshi, S., Lu, C., Pizer, S.M.: Gaussian distributions on Lie groups and their application to statistical shape analysis. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732. Springer, Berlin (2003)

    Google Scholar 

  13. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  14. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10, 215–310 (1948)

    Google Scholar 

  15. Gerig, G., Styner, M.: Shape vs size: improved understanding of the morphology of brain structures. In: MICCAI 2001. LNCS, vol. 2208. Springer, Berlin (2001)

    Google Scholar 

  16. Gower, J.C.: Generalised Procrustes analysis. Psychometrika 40(1), 33–51 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  17. Johnson, G.W., Lapidus, M.L.: The Feynman Integral and Feynman’s Operational Calculus. Oxford University Press, London (2000)

    MATH  Google Scholar 

  18. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. 30, 509–541 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  19. Kelemen, A., Székely, G., Gerig, G.: Elastic model-based segmentation of 3-D neuroradiological data sets. IEEE Trans. Med. Imaging 18(10), 828–839 (1999)

    Article  Google Scholar 

  20. Kendall, D.G.: Shape-manifolds, procrustes metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  21. Kim, J.-G.: Probabilistic shape models: application to medical images. Ph.D. thesis, Oxford University (2005)

  22. Klassen, E., Srivastava, A., Mio, W., Joshi, S.H.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Trans. PAMI 26(3), 372–383 (2004)

    Google Scholar 

  23. Kotcheff, A.C.W., Taylor, C.J.: Automatic construction of eigenshape models by direct optimization. Med. Image Anal. 2(4), 303–314 (1988)

    Article  Google Scholar 

  24. Kume, A., Le, H.: Estimating Fréchet means in Bookstein’s shape space. Adv. Appl. Probab. (SGSA) 32, 663–674 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Le, H.: Mean size-and-shapes and mean shapes: a geometric point of view. Adv. Appl. Probab. (SGSA) 27, 44–55 (1995)

    Article  MATH  Google Scholar 

  26. Le, H.: On the consistency of Procrustean mean shape. Adv. Appl. Probab. (SGSA) 30, 53–63 (1998)

    Article  MATH  Google Scholar 

  27. Le, H.: Locating Fréchet means with application to shape spaces. Adv. Appl. Probab. (SGSA) 33, 324–338 (2001)

    Article  MATH  Google Scholar 

  28. Le, H., Kume, A.: The Fréchet mean shape and the shape of the means. Adv. Appl. Probab. (SGSA) 32, 101–113 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Mardia, K.V., Dryden, I.L.: Shape distributions for landmark data. Adv. Appl. Probab. (SGSA) 21, 742–755 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  30. Meier, D., Fisher, E.: Parameter space warping: shape-based correspondence between morphologically different objects. IEEE Trans. Med. Imaging 21(1), 31–47 (2002)

    Article  Google Scholar 

  31. Mumford, D.: The problem of robust shape descriptors. In: 1st ICCV 1987, pp. 602–606. IEEE (1987)

  32. Pennec, X.: Intrinsic statistics on Riemannian manifolds: Basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)

    Article  MathSciNet  Google Scholar 

  33. Pennec, X., Ayache, N.: Uniform distribution, distance and expectation problems for geometric features processing. J. Math. Imaging Vis. 9, 46–67 (1998)

    Article  MathSciNet  Google Scholar 

  34. Pennec, X., Thirion, J.-P.: A framework for uncertainty and validation of 3D registration methods based on points and frames. Int. J. Comput. Vis. 25(3), 203–229 (1997)

    Article  Google Scholar 

  35. Pizer, S.M., Eberly, D., Fritsch, D.S.: Zoom-invariant vision of figural shape: the mathematics of cores. Comput. Vis. Image Underst. 69(1), 55–71 (1998)

    Article  Google Scholar 

  36. Pizer, S.M., Fritsch, D.S., Yushkevich, P.A., Johnson, V.E., Chaney, E.L.: Segmentation, registration and measurement of shape variation via image object shape. IEEE Trans. Med. Imaging 18(10), 851–865 (1999)

    Article  Google Scholar 

  37. Reed, M., Simon, B.: Functional Analysis. Methods of Modern Mathematical Physics, vol. 1. Academic Press, New York (1980)

    MATH  Google Scholar 

  38. Royden, H.L.: Real Analysis, 3rd edn. Macmillan, New York (1988)

    MATH  Google Scholar 

  39. Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1976)

    MATH  Google Scholar 

  40. Rudin, W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  41. Small, C.G.: The Statistical Theory of Shape. Springer, Berlin (1996)

    MATH  Google Scholar 

  42. Sparr, G.: Depth computations from polyhedral images. Image Vis. Comput. 10(10), 683–688 (1992)

    Article  Google Scholar 

  43. Sparr, G.: A common framework for kinetic depth, reconstruction and motion for deformable objects. In: European Conf. on Computer Vision. LNCS, vol. 801, pp. 471–482. Springer, Berlin (1994)

    Google Scholar 

  44. Sparr, G.: Euclidean and affine structure/motion for uncalibrated cameras from affine shape and subsidiary information. In: SMILE Workshop (1998)

  45. Staib, L.H., Duncan, J.S.: Boundary finding with parametrically deformable models. IEEE Trans. PAMI 14(11), 1061–1075 (1992)

    Google Scholar 

  46. Styner, M., Gerig, G.: Medial models incorporating object variability for 3D shape analysis. In: IPMI 2001. LNCS, vol. 2082. Springer, Berlin (2001)

    Google Scholar 

  47. Székely, G., Kelemen, A., Brechbühler, C., Gerig, G.: Segmentation of 2D and 3D object from MRI volume data using constrained elastic deformations of flexible Fourier contour and surface models. Med. Image Anal. 1(1), 19–34 (1996)

    Google Scholar 

  48. Terzopoulos, D., Metaxas, D.: Dynamic 3D models with local and global deformations: deformable superquadrics. IEEE Trans. in PAMI 13(7), 703–714 (1991)

    Google Scholar 

  49. Thodberg, H.H.: Minimum description length shape and appearance models. In: IPMI 2003. LNCS, vol. 2732, pp. 51–62. Springer, Berlin (2003)

    Google Scholar 

  50. Thompson, D.: On Growth and Form. Cambridge University Press, Cambridge (1961)

    Google Scholar 

  51. Trefethen, L.N., Bau III, D.: Numerical Linear Algebra. SIAM (1997)

  52. Troutman, J.L.: Variational Calculus and Optimal Control, 2nd edn. Springer, New York (1996)

    MATH  Google Scholar 

  53. Twining, C., Marsland, S.: Constructing diffeomorphic representations of non-rigid registrations of medical images. In: Taylor, C.J., Noble, J.A. (eds.) IPMI 2003. LNCS, vol. 2732, pp. 413–425. Springer, Berlin (2003)

    Google Scholar 

  54. Yeh, J.: Stochastic Processes and the Wiener Integral. Pure and Applied Mathematics, vol. 13. Marcel Dekker, New York (1973)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong-Gyoo Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kim, JG., Noble, J.A. & Brady, J.M. Probabilistic Models for Shapes as Continuous Curves. J Math Imaging Vis 33, 39–65 (2009). https://doi.org/10.1007/s10851-008-0104-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-008-0104-3

Keywords

Navigation