Skip to main content
Log in

A Probabilistic Method for Point Matching in the Presence of Noise and Degeneracy

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The Bayesian method is widely used in image processing and computer vision to solve ill-posed problems. This is commonly achieved by introducing a prior which, together with the data constraints, determines a unique and hopefully stable solution. Choosing a “correct” prior is however a well-known obstacle.

This paper demonstrates that in a certain class of motion estimation problems, the Bayesian technique of integrating out the “nuisance parameters” yields stable solutions even if a flat prior on the motion parameters is used. The advantage of the suggested method is more noticeable when the domain points approach a degenerate configuration, and/or when the noise is relatively large with respect to the size of the point configuration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  2. Forsyth, D.A., Ponce, J.: Computer Vision: A Modern Approach. Prentice Hall, New York (2002)

    Google Scholar 

  3. Georgescu, B., Meer, P.: Balanced recovery of 3d structure and camera motion from uncalibrated image sequences. 7th Eur. Conf. Comput. Vis. II, 294–308 (2002)

    Google Scholar 

  4. Goshen, L., Shimshoni, I., Anandan, P., Keren, D.: Recovery of epipolar geometry as a manifold fitting problem. In: Proceedings of the 9th International Conference on Computer Vision, pp. 1321–1328

  5. Goshen, L., Shimshoni, I., Anandan, P., Keren, D.: Motion recovery by integrating over the joint image manifold. Int. J. Comput. Vis. 65(3), 131–145 (2005)

    Article  Google Scholar 

  6. Gull, S.F.: Bayesian data analysis: straight-line fitting. In: Maximum Entropy and Bayesian Methods, pp. 511–518 (1989)

  7. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  8. Jaynes, E.T.: In: Rosenkrantz, R. (ed.) Papers on Probability, Statistics, and Statistical Physics, pp. 190–209. Reidel, Dordrecht (1983)

    Google Scholar 

  9. Jaynes, E.T.: Straight line fitting—a Bayesian solution. Unpublished manuscript, item 22 in http://bayes.wustl.edu/etj/node2.html

  10. Kanatani, K.: Geometric Computation for Machine Vision. Clarendon Press, Oxford (1993)

    MATH  Google Scholar 

  11. Kanatani, K.: Statistical analysis of geometric computation. Comput. Vis. Graph. Image Process. 59(3), 286–306 (1994)

    Article  Google Scholar 

  12. Keren, D., Shimshoni, I., Goshen, L., Werman, M.: All points considered a maximum-likelihood method for motion estimation. In: Dagstuhl Workshop on Geometry, Morphology, and Computational Imaging, April (2002). Also in LNCS, vol. 2616, pp. 72–85 (2003)

  13. Minka, T.: Linear regression with errors in both variables: a proper Bayesian approach. Unpublished manuscript, http://www.stat.cmu.edu/~minka/papers/eiv.html

  14. Matei, B., Meer, P.: Optimal rigid motion estimation and performance evaluation with bootstrap. IEEE Conf. Comput. Vis. Pattern Recognit. I, 339–345 (1999)

    Google Scholar 

  15. Nestares, O., Fleet, D.J., Heeger, D.J.: Likelihood functions and confidence bounds for total-least-squares problems. IEEE Conf. Comput. Vis. Pattern Recognit. I, 523–530 (2000)

    Google Scholar 

  16. Newsam, G.N., Redding, N.J.: Fitting the most probable curve to noisy observations. Proc. Int. Conf. Image Process. II, 752–755 (1997)

    Article  Google Scholar 

  17. Ohta, N.: Motion parameter estimation from optical flow without nuisance parameters. In: 3rd IEEE Workshop on Statistical and Computational Theories of Vision (2003). http://department.stat.ucla.edu/~yuille/meetings/papers/sctv03_24.pdf

  18. Okatani, T., Deguchi, K.: Is there room for improving estimation accuracy of the structure and motion problem? In: Suter, D. (ed.) Proceedings of the Statistical Methods in Video Processing Workshop, pp. 25–30 (2002)

  19. Torr, P.H.S.: Bayesian model estimation and selection for epipolar geometry and generic manifold fitting. Int. J. Comput. Vis. 50(1), 27–45 (2002)

    Article  Google Scholar 

  20. Torr, P.H.S., Zisserman, A.: Feature based methods for structure and motion estimation. In: Triggs, W., Zisserman, A., Szeliski, R. (eds.) Vision Algorithms: Theory and Practice. LNCS, vol. 1883, pp. 278–295. Springer, Berlin (1999)

    Chapter  Google Scholar 

  21. Torr, P.H.S., Zisserman, A., Maybank, S.J.: Robust detection of degenerate configurations while estimating the fundamental matrix. Comput. Vis. Image Underst. 71(3), 312–333 (1998)

    Article  Google Scholar 

  22. Torr, P.H.S., Zisserman, A., Fitzgibbon, A.W.: The problem of degeneracy in structure and motion recovery from uncalibrated image sequences. Int. J. Comput. Vis. 32(1), 27–44 (1999)

    Article  Google Scholar 

  23. Werman, M., Keren, D.: A Bayesian method for fitting parametric and non-parametric models to noisy data. IEEE Trans. Pattern Anal. Mach. Intell. 23(5), 528–534 (2001)

    Article  Google Scholar 

  24. Zelnik-Manor, L., Irani, M.: Multi-view subspace constraints on homographies. In: IEEE International Conference on Computer Vision (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Keren.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Keren, D. A Probabilistic Method for Point Matching in the Presence of Noise and Degeneracy. J Math Imaging Vis 33, 338–346 (2009). https://doi.org/10.1007/s10851-008-0116-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-008-0116-z

Keywords