Skip to main content

Advertisement

Log in

Fast Object Segmentation by Growing Minimal Paths from a Single Point on 2D or 3D Images

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, we present a new method for segmenting closed contours and surfaces. Our work builds on a variant of the minimal path approach. First, an initial point on the desired contour is chosen by the user. Next, new keypoints are detected automatically using a front propagation approach. We assume that the desired object has a closed boundary. This a-priori knowledge on the topology is used to devise a relevant criterion for stopping the keypoint detection and front propagation. The final domain visited by the front will yield a band surrounding the object of interest. Linking pairs of neighboring keypoints with minimal paths allows us to extract a closed contour from a 2D image. This approach can also be used for finding an open curve giving extra information as stopping criteria. Detection of a variety of objects on real images is demonstrated. Using a similar idea, we can extract networks of minimal paths from a 3D image called Geodesic Meshing. The proposed method is applied to 3D data with promising results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ardon, R., Cohen, L.D., Yezzi, A.: A new implicit method for surface segmentation by minimal paths in 3d images. Appl. Math. Optim. 55(18), 127–144 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  2. Benmansour, F., Bonneau, S., Cohen, L.D.: Finding a closed boundary by growing minimal paths from a single point on 2d or 3d images. In: MMBIA07, pp. 1–8 (2007)

  3. Bonneau, S.: Chemins minimaux en Analyse d’images: Nouvelles contributions et applications à l’imagerie biologique. PhD thesis, Université Paris-Dauphine, France (2006)

  4. Bonneau, S., Dahan, M., Cohen, L.D.: Single quantum dot tracking based on perceptual grouping using minimal paths in a spatiotemporal volume. IEEE Trans. Image Process. 14, 1384–1395 (2005)

    Article  Google Scholar 

  5. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  6. Cohen, L.D.: Multiple contour finding and perceptual grouping using minimal paths. J. Math. Imaging Vis. 14, 225–236 (2001)

    Article  MATH  Google Scholar 

  7. Cohen, L.D.: Minimal paths and fast marching methods for image analysis. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Mathematical Models in Computer Vision: The Handbook. Springer, Berlin (2005)

    Google Scholar 

  8. Cohen, L.D., Kimmel, R.: Global minimum for active contour models: a minimal path approach. Int. J. Comput. Vis. 24, 57–78 (1997)

    Article  Google Scholar 

  9. Deschamps, T., Cohen, L.D.: Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Med. Image Anal. 5, 281–299 (2001)

    Article  Google Scholar 

  10. Dijkstra, E.W.: A note on two problems in connection with graphs. Numer. Math. 1, 269–271 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  11. Falcão, A.X., Udupa, J.K., Miyazawa, F.K.: An ultra-fast user-steered image segmentation paradigm: Live-wire-on-the-fly. IEEE Trans. Med. Imaging 19(1), 55–62 (2000)

    Article  Google Scholar 

  12. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  Google Scholar 

  13. Kim, S.: An \(\mathcal{O}({N})\) level set method for Eikonal equations. SIAM J. Sci. Comput. 22, 2178–2193 (2001)

    Article  MATH  Google Scholar 

  14. Kimmel, R., Sethian, J.A.: Optimal algorithm for shape from shading and path planning. J. Math. Imaging Vis. 14, 237–244 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Peyré, G., Cohen, L.D.: Geodesic remeshing using front propagation. Int. J. Comput. Vis. 69, 145–156 (2006)

    Article  Google Scholar 

  16. Rouy, E., Tourin, A.: A viscosity solution approach to shape from shading. SIAM J. Numer. Anal. 29, 867–884 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  17. Sethian, J.A.: A fast marching level set for monotonically advancing fronts. Proc. Natl. Acad. Sci. 93, 1591–1595 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Sethian, J.A.: Fast marching methods. SIAM Rev. 41, 199–235 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  19. Sethian, J.A.: Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  20. Tsitsiklis, J.N.: Efficient algorithms for globally optimal trajectories. IEEE Trans. Autom. Control 40, 1528–1538 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  21. Yatziv, L., Bartesaghi, A., Sapiro, G.: \(\mathcal{O}({N})\) implementation of the fast marching algorithm. J. Comput. Phys. 212, 393–399 (2006)

    Article  MATH  Google Scholar 

  22. Yezzi, A., Kichenassamy, S., Kumar, A., Olver, P., Tannenbaum, A.: A geometric snake model for segmentation of medical imagery. IEEE Trans. Med. Imaging 16, 199–209 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fethallah Benmansour.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benmansour, F., Cohen, L.D. Fast Object Segmentation by Growing Minimal Paths from a Single Point on 2D or 3D Images. J Math Imaging Vis 33, 209–221 (2009). https://doi.org/10.1007/s10851-008-0131-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-008-0131-0

Keywords