Skip to main content

Advertisement

Robust Surface Fitting from Two Views using Restricted Correspondence

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The restricted correspondence problem is the task of solving the classical stereo correspondence problem when the surface being observed is known to belong to a family of surfaces that vary in a known way with one or more parameters. Under this constraint the surface can be extracted far more robustly than by classical stereo applied to an arbitrary surface, since the problem is solved semi-globally, rather than locally for each epipolar line. Here, the restricted correspondence problem is solved for two examples, the first being the extraction of the parameters of an ellipsoid from a calibrated stereo pair. The second example is the estimation of the osculating paraboloid at the frontier points of a convex object.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Birchfield, S., Tomasi, C.: A pixel dissimilarity measure that is insensitive to image sampling. Trans. Pattern Anal. Mach. Intell. 20(4), 401–406 (1998)

    Article  Google Scholar 

  2. Bloomenthal, J. (ed.): Introduction to Implicit Surfaces. Morgan Kaufmann, San Mateo (1996)

    Google Scholar 

  3. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  4. Canny, J.F.: Finding edges and line in images. Master’s thesis, MIT AI Lab (1983)

  5. Collings, S.: Frontier points: theory and methods for computer vision. PhD thesis, University of Western Australia Schools of Mathematics and Statistics and Computer Science and Software Engineering (2007). www.maths.uwa.edu.au/~scolling/Thesis

  6. Collings, S., Kozera, R., Noakes, L.: Shape recovery of a strictly convex solid from n-views. In: Proceedings of the International Conference Computer Vision and Graphics, pp. 57–64, Warsaw, Poland (2005)

  7. Collings, S., Kozera, R., Noakes, L.: Surface properties from n-views of a strictly convex solid. Fundam. Inf. 72(4), 437–452 (2006)

    MATH  MathSciNet  Google Scholar 

  8. Collings, S., Noakes, L., Kozera, R.: Recognising algebraic surfaces from two outlines. J. Math. Imaging Vis. 30(2), 181–193 (2008)

    Article  MathSciNet  Google Scholar 

  9. Cross, G.: Surface reconstruction from image sequences. PhD thesis, University of Oxford, Department of Engineering and Science (2000)

  10. Cross, G., Zisserman, A.: Quadric reconstruction from dual space geometry. In: Proceedings of the International Conference on Computer Vision, pp. 25–31, Bombay, India. IEEE (1998)

  11. Faugeras, O., Hotz, B., Mathieu, H., Viéville, T., Zhang, Z., Fua, P., Théron, E., Moll, L., Berry, G., Vuillemin, J., Bertin, P., Proy, C.: Real time correlation based stereo: Algorithm implementations and applications. RR-2013, INRIA, (1993). http://perception.inrialpes.fr/Publications/1993/FHMVZFTMBVBP93

  12. Faugeras, O., Kerivan, R.: Variational principals, surface evolution, pde’s, level set methods and the stereo problem. Trans. Image Process. 7(3), 336–344 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  13. Faugeras, O.: Three-Dimensional Computer Vision. MIT Press, Cambridge (1993)

    Google Scholar 

  14. Fisher, R., Dawson-Howe, K., Fitzgibbon, A., Robertson, C., Trucco, E.: Dictionary of Computer Vision and Image Processing. Wiley, New York (2005)

    Book  Google Scholar 

  15. Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least squares fitting of ellipses. Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)

    Article  Google Scholar 

  16. Forsyth, D.A.: Recognizing algebraic surfaces from their outlines. Int. J. Comput. Vis. 18(1), 21–40 (1996)

    Article  MathSciNet  Google Scholar 

  17. Geusebroek, J.M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam library of object images. Int. J. Comput. Vis. 61(1), 103–112 (2005). http://staff.science.uva.nl/~aloi/

    Article  Google Scholar 

  18. Giblin, P.J., Weiss, R.S.: Epipolar fields on surfaces. In: Proceedings of the European Conference on Computer Vision. LNCS 800, vol. 1, pp. 14–23. Springer, Berlin (1994)

    Google Scholar 

  19. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Englewood Cliffs (2002)

    Google Scholar 

  20. Himmelblav, D.M.: Applied Nonlinear Programming. McGraw-Hill, New York (1972)

    Google Scholar 

  21. Kanade, T.: Development of a video-rate stereo machine. In: Image Understanding Workshop, pp. 549–557 (1994)

  22. Karl, W.C., Verghese, G.C., Willsky, A.S.: Reconstructing ellipsoids from projections. Graph. Models Image Process. 56(2), 124–139 (1994)

    Article  Google Scholar 

  23. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application in stereo vision. In: Proceedings of the International Joint Conference on Artificial Intelligence (1981)

  24. Ma, S.D., Chen, X.: Reconstruction of quadric surface from occluding contour. In: Proceedings of the International Conference on Pattern Recognition, pp. 27–31. IEEE (1994)

  25. Marr, D., Hildreth, E.C.: Theory of edge detection. In: Proceedings of the Royal Society, vol. B, pp. 187–217 (1980)

  26. Marsden, J.E.: Elementary Classical Analysis. Freeman, San Francisco (1974)

    MATH  Google Scholar 

  27. Millman, R.S., Parker, G.D.: Elements of Differential Geometry. Prentice Hall, Englewood Cliffs (1977)

    MATH  Google Scholar 

  28. Otten, R.H.J.M., van Ginneken, L.P.P.P.: The Annealing Algorithm. Kluwer, Boston (1989)

    Google Scholar 

  29. Polak, E.: Optimization: Algorithms and Consistent Approximations. Springer, New York (1997)

    MATH  Google Scholar 

  30. Porill, J., Pollard, S.: Curve matching and stereo calibration. Image Vis. Comput. 9(1), 45–50 (1991)

    Article  Google Scholar 

  31. Rieger, J.H.: Three-dimensional motion from fixed points of a deforming profile curve. Opt. Lett. 11(3), 123–125 (1986)

    Article  Google Scholar 

  32. Robert, L., Deriche, R.: Dense depth map reconstruction: A minimization and regularization approach that preserves discontinuities. In: Proceedings of the European Conference on Computer Vision, pp. 439–451. Springer, Berlin (1996)

    Google Scholar 

  33. Roy, S.: Stereo without epipolar lines: A maximum flow formulation. Int. J. Comput. Vis. 34(2/3), 147–161 (1999)

    Article  Google Scholar 

  34. Scharstein, D.: Matching images by comparing their gradient fields. In: International Conference on Pattern Recognition, vol. 1, pp. 572–575 (1994)

  35. Scharstein, D., Szeliski, R., Zabih, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47, 7–42 (2002)

    Article  MATH  Google Scholar 

  36. Seitz, S., Dyer, C.M.: Photorealistic scene reconstruction by voxel coloring. Int. J. Comput. Vis. 35(2), 1–23 (1999)

    Article  Google Scholar 

  37. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, San Diego (1982)

    MATH  Google Scholar 

  38. Shashua, A., Toelg, S.: The quadric reference surface: theory and applications. Int. J. Comput. Vis. 23(2), 185–198 (1997)

    Article  Google Scholar 

  39. Sneddon, I.N.: Elements of Partial Differential Equations. McGraw-Hill, New York (1957)

    MATH  Google Scholar 

  40. Sun, J., Zheng, N.-N., Shum, H.-Y.: Stereo matching using belief propagation. Trans. Pattern Anal. Mach. Intell. 25(7), 787–800 (2003)

    Article  Google Scholar 

  41. Szeliski, R.: Prediction error as a quality metric for motion and stereo. Int. J. Comput. Vis. 2, 781–788 (1999)

    Google Scholar 

  42. Teutsch, C., Berndt, D., Trostmann, E., Weber, M.: Real-time detection of elliptic shapes for automated object recognition and object tracking. In: Proceedings of Machine Vision Applications in Industrial Inspection XIV, Electronic Imaging 2006, 15–19 January 2006, San Jose, California, USA, pp. 171–179. SPIE/IS&T (2006)

  43. Vogiatzis, G., Favaro, P., Cipolla, R.: Using frontier points to recover shape, reflectance and illumination. In: Proceedings of the International Conference on Computer Vision, pp. 228–235, Beijing, China. IEEE Computer Society (2005)

  44. Xie, Y., Ji, Q.: A new efficient ellipse detection method. In: Proceedings of the International Conference on Pattern Recognition, vol. 2, pp. 957–960 (2002)

  45. Zitnick, C.L., Kanade, T.: A cooperative algorithm for stereo matching and occlusion detection. Trans. Pattern Anal. Mach. Intell. 22(7), 675–684 (2000)

    Article  Google Scholar 

  46. Zwillinger, D.: CRC Standard Mathematical Tables and Formulae, 31st edn. Chapman and Hall/CRC, London (2003)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon Collings.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Collings, S., Kozera, R. & Noakes, L. Robust Surface Fitting from Two Views using Restricted Correspondence. J Math Imaging Vis 34, 200–221 (2009). https://doi.org/10.1007/s10851-009-0142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-009-0142-5

Keywords