Skip to main content
Log in

On the Topology and Geometry of Spaces of Affine Shapes

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We define the space of affine shapes of k points in R n to be the topological quotient of (R n)k modulo the natural action of the affine group of R n. These spaces arise naturally in many image-processing applications, and despite having poor separation properties, have some topological and geometric properties reminiscent of the more familiar Procrustes shape spaces Σ k n in which one identifies configurations related by an orientation-preserving Euclidean similarity transformation. We examine the topology of the connected, non-Hausdorff spaces Sh k n in detail. Each Sh k n is a disjoint union of naturally ordered strata, each of which is homeomorphic in the relative topology to a Grassmannian, and we show how the strata are attached to each other. The top stratum carries a natural Riemannian metric, which we compute explicitly for k>n, expressing the metric purely in terms of “pre-shape” data, i.e. configurations of k points in R n.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berthilsson, R., Astrom, K., Heyden, A.: Reconstruction of curves in R3, using factorization and bundle adjustment. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, pp. 674–679 (1999)

  2. Bala, E., Cetin, A.E.: Computationally efficient wavelet affine invariant functions for shape recognition. IEEE Trans. Pattern Anal. Mach. Intell. 26(8), 1095–1099 (2004)

    Article  Google Scholar 

  3. Betke, M., Makris, N.C.: Recognition, resolution, and complexity of objects subject to affine transformations. Int. J. Comput. Vis. 44(1), 5–40 (2001)

    Article  MATH  Google Scholar 

  4. Berthilsson, R., Heyden, A., Sparr, G.: Recursive structure and motion from image sequences using shape and depth spaces. In: Proceedings IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 444–449 (1997)

  5. Carne, T.K.: The geometry of shape spaces. Proc. Lond. Math. Soc. 16, 407–432 (1989)

    MathSciNet  Google Scholar 

  6. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2–3), 114–141 (2003)

    Article  MATH  Google Scholar 

  7. Edelman, A., Arias, T.A., Smith, S.T.: The geometry of algorithms with orthogonality constraints. SIAM J. Matrix Anal. Appl. 20(2), 303–353 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  8. Faugeras, O.: Three Dimensional Computer Vision. MIT Press, Cambridge (1993)

    Google Scholar 

  9. Fletcher, P.T., Venkatasubramanian, S., Joshi, S.: Robust statistics on Riemannian manifolds via the geometric median. In: Proceedings CVPR (2008)

  10. Hagedoorn, M., Veltkamp, R.C.: Reliable and efficient pattern matching using an affine invariant metric. Int. J. Comput. Vis. 31(2/3), 203–225 (1999)

    Article  Google Scholar 

  11. Kendall, D.G.: Shape manifolds, Procrustean metrics, and complex projective spaces. Bull. Lond. Math. Soc. 16, 81–121 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  12. Kendall, D.G., Barden, D., Carne, T.K., Le, H.: Shape and Shape Theory. Wiley, Chichester (1999)

    Book  MATH  Google Scholar 

  13. Klein, G.J., Reutter, R.W., Huesman, R.H.: Four-dimensional affine registration models for respiratory-gated PET. IEEE Trans. Nucl. Sci. 48, 756–760 (2001)

    Article  Google Scholar 

  14. Lamdan, Y., Schwartz, J.T., Wolfson, H.J.: Affine invariance model based object recognition. IEEE Trans. Robot. Autom. 6, 578–589 (1990)

    Article  Google Scholar 

  15. Mardia, K.V., Patrangenaru, V., Derado, G., Patrangenaru, V.P.: Reconstruction of planar scenes from multiple views using affine and projective shape manifolds. In: 2003 IEEE Workshop on Statistical Signal Processing, pp. 298–301, October 2003

  16. Milnor, J.W., Stasheff, J.D.: Characteristic Classes. Princeton University Press, Princeton (1974)

    MATH  Google Scholar 

  17. Ness, L.: A stratification of the null cone via the moment map. Am. J. Math. 106, 1281–1329 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  18. Patrangenaru, V., Mardia, K.V.: Affine shape analysis and image analysis. In: Aykroyd, R.G., Mardia, K.V., Langdon, M.J. (eds.) Stochastic Geometry, Biological Structure and Images, pp. 57–62 (2003)

  19. Pennec, X.: Intrinsic statistics on Riemannian manifolds: basic tools for geometric measurements. J. Math. Imaging Vis. 25(1), 127–154 (2006)

    Article  MathSciNet  Google Scholar 

  20. Rueckert, D., Sonoda, L.I., Hayes, C., Hill, D.L.G., Leach, M.O., Hawkes, D.J.: Nonrigid registration using free-form deformations: application to breast MR images. IEEE Trans. Med. Imaging 18, 712–721 (1999)

    Article  Google Scholar 

  21. Sepiashvili, D., Moura, J.M.F., Ha, V.H.S.: Affine permutation symmetry: invariance and shape space. In: 2003 IEEE Workshop on Statistical Signal Processing, pp. 307–310 (2003)

  22. Small, C.G.: The Statistical Theory of Shape. Springer, New York (1996)

    MATH  Google Scholar 

  23. Sparr, G.: Simultaneous reconstruction of scene structure and camera locations from uncalibrated image sequences. In: Proceedings of the 13th International Conference on Pattern Recognition, vol. 1, pp. 328–333, August 1996

  24. Triggs, B.: Autocalibration from planar scenes. In: Burkhardt, H., Neumann, B. (eds.) Proceedings of the Fifth European Conference on Computer Vision. Lecture Notes in Computer Science. Springer, Berlin (1998)

    Google Scholar 

  25. Tieng, Q.M., Boles, W.W.: Wavelet-based affine invariant representation: a tool for recognizing planar objects in 3D space. IEEE Trans. Pattern Anal. Mach. Intell. 19(8), 846–857 (1997)

    Article  Google Scholar 

  26. Yang, Z., Cohen, F.S.: Image registration and object recognition using affine invariants and convex hulls. IEEE Trans. Image Process. 8(7), 934–946 (1999)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hemant D. Tagare.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Groisser, D., Tagare, H.D. On the Topology and Geometry of Spaces of Affine Shapes. J Math Imaging Vis 34, 222–233 (2009). https://doi.org/10.1007/s10851-009-0143-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-009-0143-4

Keywords

Navigation