Abstract
We investigate solutions to the minimal surface problem with Dirichlet boundary conditions in the roto-translation group equipped with a sub-Riemannian metric. By work of G. Citti and A. Sarti, such solutions are completions of occluded visual data when using a model of the first layer of the visual cortex. Using a characterization of smooth non-characteristic minimal surfaces as ruled surfaces, we give a method to compute a minimal spanning surface given fixed boundary data presuming such a surface exists. Moreover, we describe a number of obstructions to existence and uniqueness but also show that under suitable conditions, smooth minimal spanning surfaces with good properties exist. Not only does this provide an explicit realization of the disocclusion process for the neurobiological model, but it also has application to constructing disocclusion algorithms in digital image processing.
Similar content being viewed by others
References
Ambrosio, L., Masnou, S.: A direct variational approach to a problem arising in image reconstruction. Interfaces Free Bound. 5(1), 63–81 (2003)
Barone Adesi, V., Serra Cassano, F., Vittone, D.: The Bernstein problem for intrinsic graphs in Heisenberg groups and calibrations. Calc. Var. Partial Differ. Equ. 30(1), 17–49 (2007)
Ben-Shahar, O., Zucker, S.W.: The perceptual organization of texture flow: A contextual inference approach. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 401–417 (2003)
Ben-Shahar, O., Zucker, S.W.: Hue geometry and horizontal connections. Neural Netw. 17(5–6), 753–771 (2004). Special Issue on Vision and Brain
Capogna, L., Citti, G.: Generalized mean curvature flow in Carnot groups. Commun. PDE (2009, to appear)
Capogna, L., Citti, G., Manfredini, M.: Smoothness of Lipschitz intrinsic minimal graphs in the Heisenberg group H n,n>1. Crelle’s J. (2009, to appear)
Cheng, J.H., Hwang, J.F.: Properly embedded and immersed minimal surfaces in the Heisenberg group. Bull. Aust. Math. Soc. 70(3), 507–520 (2004)
Cheng, J.H., Hwang, J.F., Malchiodi, A., Yang, P.: Minimal surfaces in pseudohermitian geometry. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(1), 129–177 (2005)
Cheng, J.H., Hwang, J.F., Yang, P.: Existence and uniqueness for p-area minimizers in the Heisenberg group. Math. Ann. 337(2), 253–293 (2007)
Cheng, J.H., Hwang, J.F., Yang, P.: Regularity of C 1 smooth surfaces with prescribed p-mean curvature in the Heisenberg group. Math. Ann. 344(1), 1–35 (2009)
Citti, G., Manfredini, M., Sarti, A.: Neuronal oscillation in the visual cortex: Gamma-convergence to the Riemannian Mumford-Shah functional. SIAM J. Math. Anal. 35(6), 1394–1419 (2003)
Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24, 307–326 (2006)
Cole, D.: On minimal surfaces in Martinet-type spaces. PhD thesis, Dartmouth College (2005)
Danielli, D., Garofalo, N., Nhieu, D.M.: Sub-Riemannian calculus on hypersurfaces in Carnot groups. Adv. Math. 215(1), 292–378 (2007)
Danielli, D., Garofalo, N., Nhieu, D.M.: A partial solution of the isoperimetric problem for the Heisenberg group. Forum Math. 20(1), 99–143 (2008)
Danielli, D., Garofalo, N., Nhieu, D.M.: A notable family of entire intrinsic minimal graphs in the Heisenberg group which are not perimeter minimizing. Am. J. Math. 130(2), 317–339 (2008)
Danielli, D., Garofalo, N., Nhieu, D.M., Pauls, S.: Instability of graphical strips and a positive answer to the Bernstein problem in the Heisenberg group. J. Differ. Geom. 81(2), 251–296 (2009)
Farid, H., Simoncelli, E.P.: Differentiation of multi-dimensional signals. IEEE Trans. Image Process. 13(4), 496–508 (2004)
Field, D.J., Hess, A., Hayes, R.: Contour integration by the human visual system: Evidence for a local association field. Vis. Res. 33(2), 173–193 (1993)
Garofalo, N., Nhieu, D.M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49(10), 1081–1144 (1996)
Gilbert, C.D., Das, A., Ito, M., Westheimer, G.: Spatial integration and cortical dynamics. Proc. Natl. Acad. Sci. USA 93, 615–622 (1996)
Hladky, R.K., Pauls, S.D.: Constant mean curvature surfaces in sub-Riemannian spaces. J. Differ. Geom. 79(1), 111–140 (2008)
Hoffman, W.C.: The visual cortex is a contact bundle. Appl. Math. Comput. 32(2–3), 137–167 (1989). Mathematical Biology
Hubel, D.H., Weisel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)
Hubel, D.H., Weisel, T.N.: Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. (Biol.) 198, 1–59 (1977)
Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley, New York (1963)
Leonardi, G.P., Masnou, S.: On the isoperimetric problem in the Heisenberg group H n. Ann. Mat. Pura Appl. 184(4), 533–553 (2005)
Kimia, B., Frankel, I., Popescu, A.: Euler spiral for shape completion. Int. J. Comput. Vis. 54(1–3), 159–182 (2003)
Leonardi, G.P., Rigot, S.: Isoperimetric sets on Carnot groups. Houst. J. Math. 29(3), 609–637 (2003) (electronic)
Monti, R.: Heisenberg isoperimetric problem. The axial case. Adv. Calc. Var. 1(1), 93–121 (2008)
Monti, R., Serra Cassano, F., Vittone, D.: A negative answer to the Bernstein problem for intrinsic graphs in the Heisenberg group. Boll. Unione Mat. Ital. 9(3), 709–727 (2008)
Parent, P., Zucker, S.W.: Trace inference, curvature consistency, and curve detection. IEEE Trans. Pattern Anal. Mach. Intell. 11(8), 823–839 (1989)
Pauls, S.D.: H-minimal graphs of low regularity in the Heisenberg group. Commun. Math. Helv. 81, 337–384 (2006)
Pauls, S.D.: Minimal surfaces in the Heisenberg group. Geom. Dedic. 104, 201–231 (2004)
Petitot, J.: The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Physiol. 97, 265–309 (2003)
Petitot, J., Tondut, Y.: Vers une neuro-geometrie. fibrations corticales, structures de contact et contours subjectifs modaux. Math. Inf. Sci. Hum. EHESS, Paris 145, 5–101 (1998)
Ritoré, M., Rosales, C.: Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group ℍn. J. Geom. Anal. 16(4), 703–720 (2006)
Ritoré, M., Rosales, C.: Area-stationary surfaces in the Heisenberg group \(\Bbb{H}\sp 1\). Adv. Math. 219(2), 633–671 (2008)
Ritoré, M.: Examples of area-minimizing surfaces in the sub-Riemannian Heisenberg group \(\Bbb{H}\sp 1\) with low regularity. Calc. Var. Part. Differ. Equ. 34(2), 179–192 (2009)
Sigman, M., Cecchi, G., Gilbert, C., Magnasco, M.: On a common circle: Natural scenes and Gestalt rules. PNAS 98(4), 1935–1940 (2001)
Tanaka, N.: A Differential Geometric Study on Strongly Pseudoconvex Manifolds. Kinokuniya Book-Store (1975)
Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface. J. Differ. Geom. 13, 25–41 (1978)
Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt. Psychol. Forsch. 4, 301–350 (1923) (condensed and translated as “Laws of organization in perceptual forms”, in A Source Book of Gestalt Psychology ed. by W.D. Ellis (1938, New York: Harcourt Brace), pp. 71–88)
Wertheimer, M.: Ueber Gestalttheorie, Lecture Before the Kant Gesellschaft (reprinted in translation in A Source Book of Gestalt Psychology ed. by W.D. Ellis (1938, New York: Harcourt, Brace), pp. 1–11)
Zhou, Z., Samonds, J., Bernard, M., Bonds, A.: Synchronous activity in cat visual cortex encodes collinear and cocircular contours. J. Vis. 5(8), 675a (2005)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hladky, R.K., Pauls, S.D. Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model. J Math Imaging Vis 36, 1–27 (2010). https://doi.org/10.1007/s10851-009-0167-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-009-0167-9