Skip to main content
Log in

Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We investigate solutions to the minimal surface problem with Dirichlet boundary conditions in the roto-translation group equipped with a sub-Riemannian metric. By work of G. Citti and A. Sarti, such solutions are completions of occluded visual data when using a model of the first layer of the visual cortex. Using a characterization of smooth non-characteristic minimal surfaces as ruled surfaces, we give a method to compute a minimal spanning surface given fixed boundary data presuming such a surface exists. Moreover, we describe a number of obstructions to existence and uniqueness but also show that under suitable conditions, smooth minimal spanning surfaces with good properties exist. Not only does this provide an explicit realization of the disocclusion process for the neurobiological model, but it also has application to constructing disocclusion algorithms in digital image processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Masnou, S.: A direct variational approach to a problem arising in image reconstruction. Interfaces Free Bound. 5(1), 63–81 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barone Adesi, V., Serra Cassano, F., Vittone, D.: The Bernstein problem for intrinsic graphs in Heisenberg groups and calibrations. Calc. Var. Partial Differ. Equ. 30(1), 17–49 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ben-Shahar, O., Zucker, S.W.: The perceptual organization of texture flow: A contextual inference approach. IEEE Trans. Pattern Anal. Mach. Intell. 25(4), 401–417 (2003)

    Article  Google Scholar 

  4. Ben-Shahar, O., Zucker, S.W.: Hue geometry and horizontal connections. Neural Netw. 17(5–6), 753–771 (2004). Special Issue on Vision and Brain

    Article  Google Scholar 

  5. Capogna, L., Citti, G.: Generalized mean curvature flow in Carnot groups. Commun. PDE (2009, to appear)

  6. Capogna, L., Citti, G., Manfredini, M.: Smoothness of Lipschitz intrinsic minimal graphs in the Heisenberg group H n,n>1. Crelle’s J. (2009, to appear)

  7. Cheng, J.H., Hwang, J.F.: Properly embedded and immersed minimal surfaces in the Heisenberg group. Bull. Aust. Math. Soc. 70(3), 507–520 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheng, J.H., Hwang, J.F., Malchiodi, A., Yang, P.: Minimal surfaces in pseudohermitian geometry. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 4(1), 129–177 (2005)

    MATH  MathSciNet  Google Scholar 

  9. Cheng, J.H., Hwang, J.F., Yang, P.: Existence and uniqueness for p-area minimizers in the Heisenberg group. Math. Ann. 337(2), 253–293 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Cheng, J.H., Hwang, J.F., Yang, P.: Regularity of C 1 smooth surfaces with prescribed p-mean curvature in the Heisenberg group. Math. Ann. 344(1), 1–35 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  11. Citti, G., Manfredini, M., Sarti, A.: Neuronal oscillation in the visual cortex: Gamma-convergence to the Riemannian Mumford-Shah functional. SIAM J. Math. Anal. 35(6), 1394–1419 (2003)

    Article  MathSciNet  Google Scholar 

  12. Citti, G., Sarti, A.: A cortical based model of perceptual completion in the roto-translation space. J. Math. Imaging Vis. 24, 307–326 (2006)

    Article  MathSciNet  Google Scholar 

  13. Cole, D.: On minimal surfaces in Martinet-type spaces. PhD thesis, Dartmouth College (2005)

  14. Danielli, D., Garofalo, N., Nhieu, D.M.: Sub-Riemannian calculus on hypersurfaces in Carnot groups. Adv. Math. 215(1), 292–378 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  15. Danielli, D., Garofalo, N., Nhieu, D.M.: A partial solution of the isoperimetric problem for the Heisenberg group. Forum Math. 20(1), 99–143 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Danielli, D., Garofalo, N., Nhieu, D.M.: A notable family of entire intrinsic minimal graphs in the Heisenberg group which are not perimeter minimizing. Am. J. Math. 130(2), 317–339 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Danielli, D., Garofalo, N., Nhieu, D.M., Pauls, S.: Instability of graphical strips and a positive answer to the Bernstein problem in the Heisenberg group. J. Differ. Geom. 81(2), 251–296 (2009)

    MATH  MathSciNet  Google Scholar 

  18. Farid, H., Simoncelli, E.P.: Differentiation of multi-dimensional signals. IEEE Trans. Image Process. 13(4), 496–508 (2004)

    Article  MathSciNet  Google Scholar 

  19. Field, D.J., Hess, A., Hayes, R.: Contour integration by the human visual system: Evidence for a local association field. Vis. Res. 33(2), 173–193 (1993)

    Article  Google Scholar 

  20. Garofalo, N., Nhieu, D.M.: Isoperimetric and Sobolev inequalities for Carnot-Carathéodory spaces and the existence of minimal surfaces. Commun. Pure Appl. Math. 49(10), 1081–1144 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  21. Gilbert, C.D., Das, A., Ito, M., Westheimer, G.: Spatial integration and cortical dynamics. Proc. Natl. Acad. Sci. USA 93, 615–622 (1996)

    Article  Google Scholar 

  22. Hladky, R.K., Pauls, S.D.: Constant mean curvature surfaces in sub-Riemannian spaces. J. Differ. Geom. 79(1), 111–140 (2008)

    MATH  MathSciNet  Google Scholar 

  23. Hoffman, W.C.: The visual cortex is a contact bundle. Appl. Math. Comput. 32(2–3), 137–167 (1989). Mathematical Biology

    Article  MATH  MathSciNet  Google Scholar 

  24. Hubel, D.H., Weisel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160, 106–154 (1962)

    Google Scholar 

  25. Hubel, D.H., Weisel, T.N.: Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. (Biol.) 198, 1–59 (1977)

    Article  Google Scholar 

  26. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry. Wiley, New York (1963)

    MATH  Google Scholar 

  27. Leonardi, G.P., Masnou, S.: On the isoperimetric problem in the Heisenberg group H n. Ann. Mat. Pura Appl. 184(4), 533–553 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Kimia, B., Frankel, I., Popescu, A.: Euler spiral for shape completion. Int. J. Comput. Vis. 54(1–3), 159–182 (2003)

    MATH  Google Scholar 

  29. Leonardi, G.P., Rigot, S.: Isoperimetric sets on Carnot groups. Houst. J. Math. 29(3), 609–637 (2003) (electronic)

    MATH  MathSciNet  Google Scholar 

  30. Monti, R.: Heisenberg isoperimetric problem. The axial case. Adv. Calc. Var. 1(1), 93–121 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  31. Monti, R., Serra Cassano, F., Vittone, D.: A negative answer to the Bernstein problem for intrinsic graphs in the Heisenberg group. Boll. Unione Mat. Ital. 9(3), 709–727 (2008)

    MathSciNet  Google Scholar 

  32. Parent, P., Zucker, S.W.: Trace inference, curvature consistency, and curve detection. IEEE Trans. Pattern Anal. Mach. Intell. 11(8), 823–839 (1989)

    Article  Google Scholar 

  33. Pauls, S.D.: H-minimal graphs of low regularity in the Heisenberg group. Commun. Math. Helv. 81, 337–384 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Pauls, S.D.: Minimal surfaces in the Heisenberg group. Geom. Dedic. 104, 201–231 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  35. Petitot, J.: The neurogeometry of pinwheels as a sub-Riemannian contact structure. J. Physiol. 97, 265–309 (2003)

    Google Scholar 

  36. Petitot, J., Tondut, Y.: Vers une neuro-geometrie. fibrations corticales, structures de contact et contours subjectifs modaux. Math. Inf. Sci. Hum. EHESS, Paris 145, 5–101 (1998)

    Google Scholar 

  37. Ritoré, M., Rosales, C.: Rotationally invariant hypersurfaces with constant mean curvature in the Heisenberg group ℍn. J. Geom. Anal. 16(4), 703–720 (2006)

    MATH  MathSciNet  Google Scholar 

  38. Ritoré, M., Rosales, C.: Area-stationary surfaces in the Heisenberg group \(\Bbb{H}\sp 1\). Adv. Math. 219(2), 633–671 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Ritoré, M.: Examples of area-minimizing surfaces in the sub-Riemannian Heisenberg group \(\Bbb{H}\sp 1\) with low regularity. Calc. Var. Part. Differ. Equ. 34(2), 179–192 (2009)

    Article  MATH  Google Scholar 

  40. Sigman, M., Cecchi, G., Gilbert, C., Magnasco, M.: On a common circle: Natural scenes and Gestalt rules. PNAS 98(4), 1935–1940 (2001)

    Article  Google Scholar 

  41. Tanaka, N.: A Differential Geometric Study on Strongly Pseudoconvex Manifolds. Kinokuniya Book-Store (1975)

  42. Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface. J. Differ. Geom. 13, 25–41 (1978)

    MATH  MathSciNet  Google Scholar 

  43. Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt. Psychol. Forsch. 4, 301–350 (1923) (condensed and translated as “Laws of organization in perceptual forms”, in A Source Book of Gestalt Psychology ed. by W.D. Ellis (1938, New York: Harcourt Brace), pp. 71–88)

    Article  Google Scholar 

  44. Wertheimer, M.: Ueber Gestalttheorie, Lecture Before the Kant Gesellschaft (reprinted in translation in A Source Book of Gestalt Psychology ed. by W.D. Ellis (1938, New York: Harcourt, Brace), pp. 1–11)

  45. Zhou, Z., Samonds, J., Bernard, M., Bonds, A.: Synchronous activity in cat visual cortex encodes collinear and cocircular contours. J. Vis. 5(8), 675a (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott D. Pauls.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hladky, R.K., Pauls, S.D. Minimal Surfaces in the Roto-Translation Group with Applications to a Neuro-Biological Image Completion Model. J Math Imaging Vis 36, 1–27 (2010). https://doi.org/10.1007/s10851-009-0167-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-009-0167-9

Keywords