Skip to main content
Log in

Effect of Stochastic Noise on Superior Julia Sets

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Julia sets are considered one of the most attractive fractals and have wide range of applications in science and engineering. The strong physical meaning of Mandelbrot and Julia sets is broadly accepted and nicely connected by Christian Beck (Physica D 125(3–4):171–182, 1999) to the complex logistic maps, in the former case, and to the inverse complex logistic map, in the latter. Argyris et al. (Chaos Solitons Fractals 11(13):2067–2073, 2000) have studied the effect of noise on Julia sets and concluded that Julia sets are stable for noises of low strength, and a small increment in the strength of noise may cause considerable deterioration in the configuration of the Julia sets. It is well-known that the method of function iterates plays a crucial role in discrete dynamics utilizing the techniques of fractal theory. However, recently Rani and Kumar (J. Korea Soc. Math. Edu. Ser. D: Res. Math. Edu. 8(4):261–277, 2004) introduced superior iterations as a generalization of function iterations in the study of Julia sets and studied superior Julia sets. This technique is further utilized to study effectively new Mandelbrot sets and related properties (see, for instance, Negi and Rani, Chaos Solitons Fractals 36(2):237–245, 2008; 36(4):1089–1096, 2008, Rani and Kumar, J. Korea Soc. Math. Edu. Ser. D: Res. Math. Edu. 8(4):279–291, 2004). The intent of this paper is to study certain effects of noise on superior Julia sets. We find that the superior Julia sets are drastically more stable for higher strength of noises than the classical Julia sets. Finally, we make a humble attempt to discuss some applications of superior orbit in discrete dynamics and of superior Julia sets in particle dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Argyris, J., Andreadis, I., Pavlos, G., Athanasiou, M.: On the influence of noise on the correlation dimension of chaotic attractors. Chaos Solitons Fractals 9(3), 343–361 (1998). Zbl 0933.37045, MR1625679

    Article  MATH  MathSciNet  Google Scholar 

  2. Argyris, J., Andreadis, I., Karakasidis, T.E.: On perturbation of the Mandelbrot map. Chaos Solitons Fractals 11(7), 1131–1136 (2000). MR1742391

    Article  MATH  MathSciNet  Google Scholar 

  3. Argyris, J., Karakasidis, T.E., Andreadis, I.: On the Julia set of the perturbed Mandelbrot map. Chaos Solitons Fractals 11(13), 2067–2073 (2000). MR1771593

    Article  MATH  MathSciNet  Google Scholar 

  4. Argyris, J., Karakasidis, T.E., Andreadis, I.: On the Julia sets of a noise-perturbed Mandelbrot map. Chaos Solitons Fractals 13(2), 245–252 (2002). MR1860768 (2002g:37051)

    Article  MATH  MathSciNet  Google Scholar 

  5. Beck, C.: Physical meaning for Mandelbrot and Julia sets. Physica D 125(3–4), 171–182 (1999). Zbl 0988.37060

    Article  MATH  MathSciNet  Google Scholar 

  6. Devaney, R.L.: A First Course in Chaotic Dynamical Systems: Theory and Experiment. Addison-Wesley Studies in Nonlinearity. Addison-Wesley, Reading (1992). MR1202237 (94a:58124)

    MATH  Google Scholar 

  7. Drakopoulos, V.: Schroder iteration functions associated with a one-parameter family of biquadratic polynomials. Chaos Solitons Fractals 13(2), 233–243 (2002). MR1860767

    Article  MATH  MathSciNet  Google Scholar 

  8. Falconer, K.: Fractal Geometry, Mathematical Foundations and Applications. Wiley, New York (1990). MR1102677 (92j:28008)

    MATH  Google Scholar 

  9. Gilbert, W.J.: The complex dynamics of Newton’s method for a double root. Comput. Math. Appl. 22(10), 115–119 (1991). Zbl 0753.65039

    Article  MATH  MathSciNet  Google Scholar 

  10. Govin, M., Jauslin, H.R., Cibils, M.: Julia sets in iterative KAM methods for eigenvalue problems. Chaos Solitons Fractals 9(11), 1835–1846 (1998). MR1670351

    Article  MATH  MathSciNet  Google Scholar 

  11. Jeong, M., Kim, G.O., Seong, S, Kim, A.: Dynamics of Newton method for solving some equations. Comput. Graphics 26(2), 271–279 (2002)

    Article  Google Scholar 

  12. Mandelbrot, B.B.: Fractals and Chaos: The Mandelbrot Set and Beyond. Springer, New York (2004). Selecta Volume C with a Foreword by P.W. Jones and Texts Co-authored by C.J.G. Evertsz and M.C. Gutzwiller, Selected Works of Benoit B. Mandelbrot. MR2029233 (2005b:01054)

    MATH  Google Scholar 

  13. Negi, A., Rani, M.: Midgets of superior Mandelbrot set. Chaos Solitons Fractals 36(2), 237–245 (2008). MR2382154

    Article  MATH  MathSciNet  Google Scholar 

  14. Negi, A., Rani, M.: A new approach to dynamic noise on superior Mandelbrot set. Chaos Solitons Fractals 36(4), 1089–1096 (2008). MR2379372

    Article  MATH  MathSciNet  Google Scholar 

  15. Peitgen, H.-O., Jürgens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science with a Foreword by Mitchell J. Feigenbaum. Springer, New York (1992). Appendix A by Yuval Fisher. Appendix B by Carl J.G. Evertsz and Benoit B. Mandelbrot. MR1185709 (93k:58157)

    Google Scholar 

  16. Rani, M., Kumar, V.: Superior Julia set. J. Korea Soc. Math. Edu. Ser. D: Res. Math. Edu. 8(4), 261–277 (2004)

    Google Scholar 

  17. Rani, M., Kumar, V.: Superior Mandelbrot set. J. Korea Soc. Math. Edu. Ser. D: Res. Math. Edu. 8(4), 279–291 (2004)

    Google Scholar 

  18. Rani, M., Kumar, V.: A new experiment with the logistic function. J. Indian Acad. Math. 27(1), 143–156 (2005). MR2224669

    MathSciNet  Google Scholar 

  19. Rani, M., Agarwal, R.: A new experimental approach to study the stability of logistic map. Chaos Solitons Fractals 141(4), 2062–2066 (2009)

    Article  Google Scholar 

  20. Russell, D.W., Alpigini, J.J.: Visualization of controllable regions in real-time systems using 3D-Julia set methodology. In: Proc. Information Visualisation (IV_97), pp. 25–31. IEEE Computer Society, Los Alamitos (1997)

    Google Scholar 

  21. Xing-Yuan, W., Wei, L.: The Julia set of Newton’s method for multiple root. Appl. Math. Comput. 172(1), 101–110 (2006). Zbl 1090.65057

    Article  MathSciNet  Google Scholar 

  22. Xing-Yuan, W., Chang, P.-J., Gu, N.-N.: Additive perturbed generalized Mandelbrot-Julia sets. Appl. Math. Comput. 189(1), 754–765 (2007). MR2330253

    Article  MATH  MathSciNet  Google Scholar 

  23. Xing-Yuan, W., Ruihong, J., Zhenfeng, Z.: The generalized Mandelbrot set perturbed by composing noise of additive and multiplicative. Appl. Math. Comput. 210, 107–116 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mamta Rani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rani, M., Agarwal, R. Effect of Stochastic Noise on Superior Julia Sets. J Math Imaging Vis 36, 63–68 (2010). https://doi.org/10.1007/s10851-009-0171-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-009-0171-0

Keywords

Navigation