Skip to main content
Log in

Expectations of Random Sets and Their Boundaries Using Oriented Distance Functions

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Shape estimation and object reconstruction are common problems in image analysis. Mathematically, viewing objects in the image plane as random sets reduces the problem of shape estimation to inference about sets. Currently existing definitions of the expected set rely on different criteria to construct the expectation. This paper introduces new definitions of the expected set and the expected boundary, based on oriented distance functions. The proposed expectations have a number of attractive properties, including inclusion relations, convexity preservation and equivariance with respect to rigid motions. The paper introduces a special class of decomposable oriented distance functions for parametric sets and gives the definition and properties of decomposable random closed sets. Further, the definitions of the empirical mean set and the empirical mean boundary are proposed and empirical evidence of the consistency of the boundary estimator is presented. In addition, the paper discusses loss functions for set inference in frequentist framework and shows how some of the existing expectations arise naturally as optimal estimators. The proposed definitions are illustrated on theoretical examples and real data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amit, Y., Grenander, U., Piccioni, M.: Structural image restoration through deformable templates. J. Am. Stat. Assoc. 86(414), 376–387 (1991)

    Article  Google Scholar 

  2. Artstein, Z., Vitale, R.A.: A strong law of large numbers for random compact sets. Ann. Probab. 3(5), 879–882 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aumann, R.J.: Integrals of set-valued functions. J. Math. Anal. Appl. 12, 1–12 (1965)

    Article  MATH  MathSciNet  Google Scholar 

  4. Baddeley, A.J.: Errors in binary images and an L p version of the Hausdorff metric. Nieuw Arch. Wisk. 10, 157–183 (1992)

    MATH  MathSciNet  Google Scholar 

  5. Baddeley, A.J.: URL http://school.maths.uwa.edu.au/homepages/adrian/

  6. Baddeley, A.J., Molchanov, I.: Averaging of random sets based on their distance functions. J. Math. Imag. Vis. 8(1), 79–92 (1998)

    Article  MathSciNet  Google Scholar 

  7. Breu, H., Gil, J., Kirkpatrick, D., Werman, M.: Linear time Euclidean distance transform algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 17(5), 529–533 (1995)

    Article  Google Scholar 

  8. Cohen, L.D.: On active contour models and balloons. Comput. Vis. Graph. Image Process. Image Underst. 53, 211–218 (1991)

    MATH  Google Scholar 

  9. Coughlan, J., Yuille, A.L., English, C., Snow, D.: Efficient deformable template detection and localization without user initialization. Comput. Vis. Image Underst. 78(3), 303–319 (2000)

    Article  Google Scholar 

  10. Delfour, M.C., Zolésio, J.-P.: Shapes and Geometries. Advances in Design and Control, vol. 4. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (2001)

    MATH  Google Scholar 

  11. Delfour, M.C., Zolésio, J.-P.: The new family of cracked sets and the image segmentation problem revisited. Commun. Inf. Syst. 4(1), 29–52 (2004)

    MATH  MathSciNet  Google Scholar 

  12. Delfour, M.C., Zolésio, J.-P.: Shape identification via metrics constructed from the oriented distance function. Control Cybern. 34(1), 137–164 (2005)

    MATH  Google Scholar 

  13. Delfour, M.C., Zolésio, J.-P.: Uniform fat segment and cusp properties for compactness in shape optimization. Appl. Math. Optim. 55, 385–419 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  14. Freidman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1977)

    Article  Google Scholar 

  15. Geman, D., Geman, S., Graffigne, C., Dong, P.: Boundary detection by constrained optimization. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 609–628 (1990)

    Article  Google Scholar 

  16. Grenander, U.: Pattern Synthesis. Springer, New York (1976). Lectures in Pattern Theory, vol. 1, Applied Mathematical Sciences, vol. 18

    MATH  Google Scholar 

  17. Jain, A.K., Zhong, Y., Dubuisson-Jolly, M.-P.: Deformable template models: a review. Signal Process. 71(2), 109–129 (1998)

    Article  MATH  Google Scholar 

  18. Jankowski, H.K., Stanberry, L.I.: Confidence sets in boundary and set estimation. arXiv:0903.1869 (2009)

  19. Kass, M., Witkin, A.P., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  20. Molchanov, I.: A limit theorem for solutions of inequalities. Scan. J. Stat. 25, 235–242 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Molchanov, I.: Theory of Random Sets. Probability and Its Applications (New York). Springer, London (2005)

    MATH  Google Scholar 

  22. Pievatolo, A., Green, P.J.: Boundary detection through dynamic polygons. J. R. Stat. Soc. Ser. B 60(3), 609–626 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  23. Qian, W., Titterington, D.M., Chapman, J.N.: An image analysis problem in electron microscopy. J. Am. Stat. Assoc. 91(435), 944–952 (1996)

    Article  MATH  Google Scholar 

  24. Rosenfeld, A., Pfaltz, J.L.: Sequential operations in digital picture processing. J. ACM 13(4), 471–494 (1966)

    MATH  Google Scholar 

  25. Stanberry, L.I., Besag, J.: Boundary reconstruction in binary images using splines (in preparation)

  26. Stoyan, D., Molchanov, I.: Set-valued means of random particles. J. Math. Imag. Vis. 7, 111–121 (1997)

    Article  MathSciNet  Google Scholar 

  27. Stoyan, D., Stoyan, H.: Fractals, Random Shapes and Point Fields. Wiley Series in Probability and Mathematical Statistics: Applied Probability and Statistics. Wiley, New York (1994)

    MATH  Google Scholar 

  28. Terzopoulos, D., Witkin, A.P., Kass, M.: Snakes: Active contour models. In: IEEE Int. Conf. Comp. Vision, pp. 259–268 (1987)

  29. Vorob’ev, O.Yu.: Srednemernoe Modelirovanie. Nauka, Moscow (1984)

    MATH  Google Scholar 

  30. Xu, C., Prince, J.L.: Snakes, shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Larissa I. Stanberry.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jankowski, H.K., Stanberry, L.I. Expectations of Random Sets and Their Boundaries Using Oriented Distance Functions. J Math Imaging Vis 36, 291–303 (2010). https://doi.org/10.1007/s10851-009-0186-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-009-0186-6

Navigation