Abstract
Motivated by the setting of reproducing kernel Hilbert space (RKHS) and its extensions considered in machine learning, we propose an RKHS framework for image and video colorization. We review and study RKHS especially in vectorial cases and provide various extensions for colorization problems. Theory as well as a practical algorithm is proposed with a number of numerical experiments.
Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337–404 (1950)
Belkin, M., Niyogi, P.: Laplacian eigenmaps for dimensionality reduction and data representation. Neural Comput. 15(6), 1373–1396 (2003)
Berlinet, A., Thomas-Agnan, C.: Reproducing Kernel Hilbert Spaces in Probability and Statistics. Springer, Berlin (2004)
Bertalmio, M., Sapiro, G., Caselles, V., Balleste, C.: Image inpainting. In: Proceedings of SIGGRAPH 2000, New Orleans (2000)
Blomgren, P., Chan, T.F.: Color TV: Total variation methods for restoration of vector-valued images. IEEE Trans. Image Process. 7(3), 304–309 (1998)
Bochko, V., Parkkinen, J.: A spectral color analysis and colorization technique. IEEE Comput. Graph. Appl. 26, 74–82 (2006)
Buades, A., Coll, B., Lisani, J.-L., Sbert, C.: Conditional image diffusion. Inverse Probl. Imaging 1(4), 593–608 (2007)
Buades, A., Coll, B., Morel, J.-M.: A review of image denoising algorithms, with a new one. SIAM Multiscale Model. Simul. 15(3), 490–530 (2005)
Burns, G.: Museum of Broadcast Communications: Encyclopedia of Television. World Wide Web electronic publication (1997)
Caponnetto, A., Pontil, M., Micchelli, C., Ying, Y.: Universal multi-task kernels. J. Mach. Learn. Res. 9, 1615–1646 (2008)
Caponnetto, A., De Vito, E.: Optimal rates for regularized least-squares algorithm. Found. Comput. Math. 7(3), 331–368 (2007)
Carmel, C., De Vito, E., Toigo, A., Umanità, V.: Vector valued reproducing kernel Hilbert spaces and universality. Anal. Appl. 8(1), 19–61 (2010)
Carmeli, C., De Vito, E., Toigo, A.: Vector valued reproducing kernel Hilbert spaces of integrable functions and Mercer theorem. Anal. Appl. 4, 377–408 (2006)
Chan, T.F., Kang, S.H., Shen, J.: Total variation denoising and enhancement of color images based on the CB and HSV color models. J. Vis. Commun. Image Represent. 12(4), 422–435 (2001)
Chen, T., Wang, Y., Schillings, V., Meinel, C.: Grayscale image matting and colorization. In: Proceedings of Asian Conference on Computer Vision (ACCV) (2004)
Chung, F.: Spectral Graph Theory. American Mathematical Society, Providence (1997)
Coifman, R.R., Lafon, S.: Geometric harmonics: a novel tool for multiscale out-of-sample extension of empirical functions. Appl. Comput. Harmon. Anal. 21, 31–52 (2006)
Cucker, F., Smale, S.: On the mathematical foundations of learning. Bull. Am. Math. Soc. 39(1), 1–49 (2002)
Drew, M., Finlayson, G.: Realistic colorization via the structure tensor. In: International Conference on Image Processing, ICIP08 (2008)
Engl, H.W., Hanke, M., Neubauer, A.: Regularization of Inverse Problems. Mathematics and Its Applications, vol. 375. Springer, Berlin (1996)
Fonseca, I., Leoni, G., Maggi, F., Morini, M.: Exact reconstruction of damaged color images using a total variation model. Preprint (2010)
Fornasier, M.: Nonlinear projection digital image inpainting and restoration methods. J. Math. Imaging Vis. 24(3), 359–373 (2006)
Fornasier, M., March, R.: Restoration of color images by vector valued BV functions and variational calculus. SIAM J. Appl. Math. 68(2), 437–460 (2007)
Gilboa, G., Osher, S.: Nonlocal linear image regularization and supervised segmentation. SIAM Multiscale Modeling and Simulation (MMS) 6(2) (2007)
Gonzalez, R., Wood, R.: Digital Image Processing. Addison-Wesley, Reading (1992)
Horiuchi, T.: Estimation of color for gray-level image by probabilistic relaxation. In: Proc. IEEE Int. Conf. Pattern Recognition, pp. 867–870 (2002)
Horiuchi, T., Hirano, S.: Colorization algorithm for grayscale image by propagating seed pixels. In: Proc. IEEE Int. Conf. Pattern Recognition, pp. 457–460 (2003)
Irony, R., Cohen-Or, D., Lischinski, D.: Colorization by example. In: Proceedings of Eurographics Symposium on Rendering, pp. 201–210 (2005)
Jones, F.: Lebesgue Integration on Euclidean Space. Jones and Bartlett, Boston (2001), revised edition
Kang, S.H., March, R.: Variational models for image colorization via chromaticity and brightness decomposition. IEEE Trans. Image Process. 16(9), 2251–2261 (2007)
Kimmel, R., Sochen, N.: Orientation diffusion or how to comb a porcupine? J. Vis. Commun. Image Represent. 13, 238–248 (2001)
Kindermann, S., Osher, S., Jones, P.: Deblurring and denoising of images by nonlocal functionals. SIAM Multiscale Model. Simul. 4(4), 2005
Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23(3), 689–694 (2004)
Lezoray, O., Ta, V.T., Elmoataz, A.: Nonlocal graph regularization for image colorization. In: Proceedings of 19th International Conference on Pattern Recognition, pp. 1–4 (2008)
Liu, B., Liu, M., Wang, G.: Colorization based on image manifold learning. In: IEEE Region 10 Conference TENCON, pp. 1–3 (2006)
Micchelli, C.A., Pontil, M.: On leaning vector-valued functions. Neural Comput. 17, 177–204 (2005)
Minh, H.Q., Niyogi, P., Yao, Y.: Mercer’s theorem, feature maps, and smoothing. In: Proceedings of 19th Annual Conference on Learning Theory, Pittsburg, June 2006. Springer, Berlin (2006)
Pan, Z., Dong, Z., Zhang, M.: A new algorithm for adding color to video or animation clips. In: WSCG, pp. 515–520 (2004)
Perona, P.: Orientation diffusion. IEEE Trans. Image Process. 7(3), 457–467 (1998)
Qiu, G., Guan, J.: Color by linear neighborhood embedding. In: IEEE International Conference on Image Processing, vol. 3, pp. 988–991 (2005)
Reinhard, E., Ashikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Trans. Comput. Graph. Appl. 21, 34–41 (2002)
Saitoh, S.: Integral Transforms, Reproducing Kernels and Their Applications. Pitman Research Notes in Mathematics Series, vol. 369. Longman, Harlow (1997)
Sapiro, G.: Inpainting the colors. In: ICIP 2005. IEEE International Conference on Image Processing, vol. 2, pp. 698–701 (2005)
Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44, 522–536 (1938)
Schökopf, B., Smola, A.: Learning with kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge (2002)
Shawe-Taylor, J., Cristianini, N.: Kernel Methods for Pattern Analysis. Cambridge University Press, Cambridge (2004)
Smale, S., Zhou, D.X.: Learning theory estimates via integral operators and their approximations. Constr. Approx. 26, 153–172 (2007)
Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)
Sýkora, D., Buriánek, J., Žáta, J.: Unsupervised colorization of black-and-white cartoons. In: Proceedings of the 3rd International Symposium on Non-Photorealistic Animation and Rendering, pp. 121–127. ACM, New York (2004)
Tai, Y.W., Jia, J., Tang, C.K.: Soft color segmentation and its applications. IEEE Trans. Pattern Anal. Mach. Intell. 29, 1520–1537 (2007)
Tang, B., Sapiro, G., Caselles, V.: Color image enhancement via chromaticity diffusion. IEEE Trans. Image Process. 10, 701–707 (2001)
Vapnik, V.: Statistical Learning Theory. Wiley, New York (1998)
Wahba, G.: Spline interpolation and smoothing on the sphere. SIAM J. Sci. Stat. Comput. 2(1), 5–16 (1981)
Wahba, G.: Spline Models for Observational Data. CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 59. SIAM, Philadelphia (1990)
Welsh, T., Ashikhmin, M., Mueller, K.: Transferring color to greyscale images. In: SIGGRAPH Conference Proceedings, p. 21 (2002)
Yatziv, L., Sapiro, G.: Fast image and video colorization using chrominance blending. IEEE Trans. Image Process. 15(5), 1120–1129 (2006)
Author information
Authors and Affiliations
Corresponding author
Additional information
The collaboration began at Hausdorff Research Institute for Mathematics, Bonn, Germany, via support of the Junior Program in Analysis. This work is partially supported by DFG:GZ WI 1515/2-1, NSF:DMS-0908517, NSF: DMS-0809270, and ONR N000140910108.
Rights and permissions
About this article
Cite this article
Ha Quang, M., Kang, S.H. & Le, T.M. Image and Video Colorization Using Vector-Valued Reproducing Kernel Hilbert Spaces. J Math Imaging Vis 37, 49–65 (2010). https://doi.org/10.1007/s10851-010-0192-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-010-0192-8