Skip to main content

Advertisement

Log in

On Restricting Planar Curve Evolution to Finite Dimensional Implicit Subspaces with Non-Euclidean Metric

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This paper deals with restricting curve evolution to a finite and not necessarily flat space of curves, obtained as a subspace of the infinite dimensional space of planar curves endowed with the usual but weak parametrization invariant curve L 2-metric.

We first show how to solve differential equations on a finite dimensional Riemannian manifold defined implicitly as a submanifold of a parameterized one, which in turn may be a Riemannian submanifold of an infinite dimensional one, using some optimal control techniques.

We give an elementary example of the technique on a spherical submanifold of a 3-sphere and then a series of examples on a highly non-linear subspace of the space of closed spline curves, where we have restricted mean curvature motion, Geodesic Active contours and compute geodesic between two curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 321–331 (1987)

  2. Sethian, J.A.: Level Set Methods, 1st edn. Cambridge Monograph on Applied and Computational Mathematics. Cambridge University Press, Cambridge (1996)

    MATH  Google Scholar 

  3. Kimmel, R.: Numerical Geometry of Images, Theory, Algorithms and Applications, 1st edn. Springer, New York (2004). Department of Computer Science, Technion-Israel Institute of Technology, Haifa 32000, Israel

    MATH  Google Scholar 

  4. Blake, A., Isard, M.: Active Contours. Springer, Berlin (1998)

    Google Scholar 

  5. Epstein, C.L., Gage, M.: The curve shortening flow. In: Wave Motion: Theory, Modeling and Computation. Springer, New York (1987)

    Google Scholar 

  6. Yezzi, A.J., Mennucci, A.: Metrics in the space of curves. Technical Report (2005). arXiv:math.DG/0412454

  7. Charpiat, G., Keriven, R., Pons, J., Faugeras, O.: Designing spatially coherent minimizing flows for variational problems based on active contours. In: Tenthf ICCV, vol. 2, Beijing, China. IEEE, New York, pp. 1403–1408 (2005)

    Google Scholar 

  8. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22, 61–79 (1997)

    Article  MATH  Google Scholar 

  9. Sundaramoorthi, G., Yezzi, A., Mennucci, A.C.: Sobolev active contours. Int. J. Comput. Vis. 73, 345–366 (2007)

    Article  Google Scholar 

  10. Charpiat, G., Maurel, P., Pons, J.P., Keriven, R., Faugeras, O.: Generalized gradients: priors on minimization flows. Int. J. Comput. Vis. 73, 325–344 (2007)

    Article  Google Scholar 

  11. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1–48 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sundaramoorthi, G., Mennucci, A., Soatto, S., Yezzi, A.: Tracking deforming objects by filtering and prediction in the space of curves. CDC (2009)

  13. Glaunés, J., Qui, A., Miller, M.I.: Large deformation diffeomorphic metric curve mapping. Int. J. Comput. Vis. 80, 317–336 (2008)

    Article  Google Scholar 

  14. Miller, M.I., Younes, L.: Group actions, homeomorphisms, and matching: a Cambridge general framework. Int. J. Comput. Vis. 41, 61–84 (2001)

    Article  MATH  Google Scholar 

  15. Younes, L.: Computable elastic distances between shapes. SIAM J. Appl. Math. 58, 565–586 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Micheli, M.: The differential geometry of landmark shape manifolds: metrics, geodesics and curvature. PhD thesis, Brown University, Providence, Rhodes Island (2008)

  17. Unal, G., Yezzi, A., Krim, H.: Information-theoretic active polygons for unsupervised texture segmentation. Int. J. Comput. Vis. 62, 199–220 (2005)

    Article  Google Scholar 

  18. Srivastava, A., Mio, W., Klassen, E., Liu, X.: Geometric analysis of constrained curves for image understanding. In: Proc. 2nd IEEE International Workshop on Variational, Geometric and Level-Set Methods in Computer Vision (VLSM) (2003)

  19. Tatu, A., Lauze, F., Nielsen, M., Olsen, O.F.: Curve evolution in subspaces. In: Scale Space and Variational Methods in Computer Vision (2007)

  20. Hairer, E.: Geometric integration of ordinary differential equations on manifolds. BIT Numer. Math. 41, 996–1007 (2001)

    Article  MathSciNet  Google Scholar 

  21. do Carmo, M.P.: Riemannian Geometry. Mathematics: Theory and Applications. Birkhäuser, Basel (1992)

    Google Scholar 

  22. Luenberger, D.G.: Optimization by Vector Space Methods. Wiley, New York (1969)

    MATH  Google Scholar 

  23. Pontryagin, L.S., Boltyanskii, V.G., Gamkrelidze, R.V., Mishchenko, E.F.: The Mathematical Theory of Optimal Processes. Interscience, New York (1962)

    MATH  Google Scholar 

  24. Kamien, M.I., Schwartz, N.L.: Dynamic Optimization: The Calculus of Variations and Optimal Control in Economics and Management. Elsevier, Amsterdam (1991)

    MATH  Google Scholar 

  25. Dedieu, J.P., Nowicki, D.: Symplectic methods for the approximation of the exponential map and the newton iteration on Riemannian submanifolds. J. Complex. 21, 487–501 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  26. Gallot, S., Hulin, D., Lafontaine, J.: Riemannian Geometry, 3rd edn. Springer, Berlin (2004)

    MATH  Google Scholar 

  27. Kamaraj, K., Sivakumar, K.C.: Moore-penrose inverse in an indefinite inner product space. J. Appl. Math. Comput. 19, 297–310 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  28. Keller, H.B.: Numerical Methods for Two-Point Boundary-Value Problems. Blaisdell, Waltham (1968)

    MATH  Google Scholar 

  29. Keller, H.B.: Numerical Solution of Two Point Boundary Problems. CBMF-NSF Regional Conference Series in Applied Mathematics, vol. 24. SIAM, Philadelphia (1976)

    Google Scholar 

  30. Lee, J.M.: Riemannian Manifolds: An Introduction to Curvature. Springer, Berlin (1997)

    MATH  Google Scholar 

  31. Unser, M.: Splines: a perfect fit for signal and image processing. IEEE Signal Process. Mag. (1999)

  32. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: Part 1—theory. IEEE Trans. Signal Process. 41, 821–832 (1993)

    Article  MATH  Google Scholar 

  33. Unser, M., Aldroubi, A., Eden, M.: B-spline signal processing: Part 2—efficient design and applications. IEEE Trans. Signal Process. 41, 834–848 (1993)

    Article  MATH  Google Scholar 

  34. Sommer, S., Tatu, A., Chen, C., de Bruijne, M., Loog, M., Jorgensen, D., Nielsen, M., Lauze, F.: Bicycle chain shape models. In: CVPR Workshop on Mathematical Methods in Biomedical Image Analysis (2009)

  35. Grayson, M.A.: The heat equation shrinks embedded plane curves to round points. J. Differ. Geom. 26 (1987)

  36. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing. Springer, Berlin (2006)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditya Tatu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tatu, A., Lauze, F., Sommer, S. et al. On Restricting Planar Curve Evolution to Finite Dimensional Implicit Subspaces with Non-Euclidean Metric. J Math Imaging Vis 38, 226–240 (2010). https://doi.org/10.1007/s10851-010-0218-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0218-2

Keywords

Navigation