Skip to main content
Log in

Accurate Depth Dependent Lens Distortion Models: An Application to Planar View Scenarios

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In order to calibrate cameras in an accurate manner, lens distortion models have to be included in the calibration procedure. Usually, the lens distortion models used in camera calibration depend on radial functions of image pixel coordinates. Such models are well-known, simple and can be estimated using just image information. However, these models do not take into account an important physical constraint of lens distortion phenomena, namely: the amount of lens distortion induced in an image point depends on the scene point depth with respect to the camera projection plane. In this paper we propose a new accurate depth dependent lens distortion model. To validate this approach, we apply the new lens distortion model to camera calibration in planar view scenarios (that is 3D scenarios where the objects of interest lie on a plane). We present promising experimental results on planar pattern images and on sport event scenarios. Nevertheless, although we emphasize the feasibility of the method for planar view scenarios, the proposed model is valid in general and can be used in any scenario where the point depth can be estimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alemán-Flores, M., Alvarez, L., Henríquez, P., Mazorra, L.: Morphological thick line center detection. In: Proceedings ICIAR’2010. LNCS, vol. 6111, pp. 71–80. Springer, Berlin (2010)

    Google Scholar 

  2. Alvarez, L., Esclarín, J., Trujillo, A.: A model based edge location with subpixel precision. In: Proceedings IWCVIA 03: International WorkShop on Computer Vision and Image Analysis (Las Palmas de Gran Canaria, Spain), pp. 29–32 (2003)

    Google Scholar 

  3. Alvarez, L., Gomez, L., Sendra, R.: An algebraic approach to lens distortion by line rectification. J. Math. Imaging Vis. 35(1), 36–50 (2009)

    Article  MathSciNet  Google Scholar 

  4. Brakhage, P., Notni, G., Kowarschik, R.: Image aberrations in optical three-dimensional measurement systems with fringe projection. Appl. Opt. 3217–3223 (2004)

  5. Bräuer-Burchardt, C., Heinze, M., Munkelt, C., Kühmstedt, P., Notni, G.: Distance dependent lens distortion variation in 3D measuring systems using fringe projection. In: BMVC 2006, pp. 327–336 (2006)

    Google Scholar 

  6. Brown, D.C.: Close-range camera calibration. Photogr. Eng. 37, 855–866 (1971)

    Google Scholar 

  7. Burner, A.W.: Zoom lens calibration for wind tunnel measurements. In: Proceedings of SPIE, Videometrics IV, vol. 2598, pp. 19–33 (1995)

    Chapter  Google Scholar 

  8. Claus, D., Fitzgibbon, A.W.: A rational function lens distortion model for general cameras. In: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Conference CVPR’05, pp. 1063–6919 (2005)

    Google Scholar 

  9. Devernay, F., Faugeras, O.: Straight lines have to be straight. Mach. Vis. Appl. 13(1), 14–24 (2001)

    Article  Google Scholar 

  10. Dold, J.: Ein hybrides photogrammetrisches Industriemesssystemhöchster Genauigkeit und seiner Überprüfung. PhD thesis, Universität der Bundeswehr München (1997)

  11. Faugeras, O.: Three-Dimensional Computer Vision. MIT Press, Cambridge (1993)

    Google Scholar 

  12. Faugeras, O., Luong, Q.-T., Papadopoulo, T.: The Geometry of Multiple Images. MIT Press, Cambridge (2001)

    MATH  Google Scholar 

  13. Fraser, C.S., Shortis, M.R.: Variation of distortion within the photographic field. Photogramm. Eng. Remote Sensing. 58(6), 851–855 (1992)

    Google Scholar 

  14. Fryer, J.G., Mason, S.O.: Rapid lens calibration of a video camera. Photogramm. Eng. Remote Sensing 55(4), 437–444 (1989)

    Google Scholar 

  15. Green, P., Sun, W., Matusik, W., Durand, F.: Multi-Aperture Photography. ACM Trans. Graph. 26(3), 68 (2007)

    Article  Google Scholar 

  16. Hanning, T.: High precision camera calibration with a depth dependent distortion mapping. In: Proceedings International Conference on Visualization, Imaging and Image Processing Conference (VIIP), Palma de Mallorca, Spain, pp. 304–309 (2008)

    Google Scholar 

  17. Hartley, R., Kang, S.B.: Parameter-free radial distortion correction with center of distortion estimation. IEEE Trans. Pattern Anal. Mach. Intell. 29(8), 1309–1321 (2007)

    Article  Google Scholar 

  18. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Hasinoff, S.W., Kutulakos, K.N.: Confocal stereo. Int. J. Comput. Vis. 81(1), 82–104 (2009)

    Article  Google Scholar 

  20. Light, D.L.: The new camera calibration system at the U.S. geological survey. Photogramm. Eng. Remote Sensing 58(2), 185–188 (1992)

    MathSciNet  Google Scholar 

  21. Magill, A.A.: Variation in distortion with magnification. J. Res. Nat. Bur. Stand. 54(3), 135–142 (1955)

    MATH  Google Scholar 

  22. Ricolfe-Viala, C., Sanchez-Salmeron, A.J.: Robust metric calibration of non-linear camera lens distortion. Pattern Recogn. 43(4), 1688–1699 (2010)

    Article  Google Scholar 

  23. Rosten, E., Loveland, R.: Camera distortion self-calibration using the plumb-line constraint and minimal Hough entropy. Mach. Vis. Appl. 1–9 (2009)

  24. Song, G.-Y., Lee, J.-W.: Correction of radial distortion based on line-fitting. Int. J. Control, Autom. Syst. 8(3), 615–621 (2010)

    Article  MathSciNet  Google Scholar 

  25. Tardif, J.P., Sturm, P., Roy, S.: Self-calibration of a general radially symmetric distortion model. In: Proceedings The 9th European Conference on Computer Vision, Graz, Austria. LNCS, vol. 3954, pp. 186–199. Springer, Berlin (2006)

    Google Scholar 

  26. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine vision metrology using off-the-shelf tv cameras and lenses. IEEE J. Robot. Autom. 3(4), 323–344 (1987)

    Article  Google Scholar 

  27. Wang, J., Shi, F., Zhang, J., Liu, Y.: A new calibration model of camera lens distortion. Pattern Recogn. 41(2), 607–615 (2008)

    Article  MATH  Google Scholar 

  28. Wang, J., Gu, W., Zhu, J., Zhang, J.: Calibration of lens distortion based on plane constraints. In: IEEE International Conference on Digital Image Processing, Los Alamitos, CA, USA, pp. 355–358 (2009)

    Google Scholar 

  29. Wang, A., Qiu, T., Shao, L.: A simple method of radial distortion correction with centre of distortion estimation. J. Math. Imaging Vis. 35(3), 165–172 (2009)

    Article  MathSciNet  Google Scholar 

  30. Wiley, A.G., Wong, K.W.: Geometric calibration of zoom lenses for computer vision metrology. Photogramm. Eng. Remote Sensing 61(1), 69–74 (1995)

    Google Scholar 

  31. Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1330–1334 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Gómez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alvarez, L., Gómez, L. & Sendra, J.R. Accurate Depth Dependent Lens Distortion Models: An Application to Planar View Scenarios. J Math Imaging Vis 39, 75–85 (2011). https://doi.org/10.1007/s10851-010-0226-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0226-2

Keywords

Navigation