Skip to main content
Log in

Image Denoising Using Gaussian Scale Mixtures with Gaussian–Hermite PDF in Steerable Pyramid Domain

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In recent years, Bayes least squares-Gaussian scale mixtures (BLS-GSM) has emerged as one of the most powerful methods for image denoising. Its strength relies on providing a simple and, yet, very effective local statistical description of coefficient neighborhoods via a GSM vector. Combining with Bayes least squares estimator, we describe a method for removing noise from digital images, based on GSM with Gaussian–Hermite PDF in Steerable pyramid domain in this paper, which can be seen a modified version of the BLS-GSM. By introducing the Gaussian–Hermite PDF, we model the distribution of Steerable pyramid coefficients with GSM. The statistical model is then used to obtain the denoised coefficients from the noisy image decomposition by Bayes least squares estimator. Extensive experimental results demonstrate that our method can obtain better performances in terms of both subjective and objective evaluations than those state-of-the-art denoising techniques. Especially, the proposed method can preserve edges very well while removing noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Motwani, M.C., Gadiya, M.C.: Survey of image denoising technique. In: Proceedings of Global Signal Processing Expo and Conference, Santa Clara, CA, September 27, 2004

    Google Scholar 

  2. Liu, C., Szeliski, R., Kang, S.B.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 299–314 (2008)

    Article  Google Scholar 

  3. Mehdi, N., Hossein, N.P.: Image denoising in the wavelet domain using a new adaptive thresholding function. Neurocomputing 72(4–6), 1012–1025 (2009)

    Google Scholar 

  4. Mário, A.T.F., Robert, N.: Wavelet-based image estimation: an empirical Bayes approach using Jeffreys’ noninformative prior. IEEE Trans. Image Process. 10(9), 1322–1331 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chen, G.Y., Bui, T.D., Krzyak, A.: Image denoising with neighbor dependency and customized wavelet and threshold. Pattern Recognit. 38(1), 115–124 (2005)

    Article  Google Scholar 

  6. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3-D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  7. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Luisier, F., Blu, T., Unser, M.: A new SURE approach to image denoising: Interscale orthonormal wavelet thresholding. IEEE Trans. Image Process. 16(3), 593–606 (2007)

    Article  MathSciNet  Google Scholar 

  9. Yan, F., Cheng, L., Peng, S.: A new Interscale and Intrascale orthonormal wavelet thresholding for SURE-Based image denoising. IEEE Trans. Signal Process. Lett. 15, 139–142 (2008)

    Article  Google Scholar 

  10. Miller, M., Kingsbury, N.: Image denoising using derotated complex wavelet coefficients. IEEE Trans. Image Process. 17(9), 1500–1511 (2008)

    Article  MathSciNet  Google Scholar 

  11. Eslami, R., Radha, H.: A new family of nonredundant transforms using hybrid wavelets and directional filter banks. IEEE Trans. Image Process. 16(4), 1152–1167 (2007)

    Article  MathSciNet  Google Scholar 

  12. Wang, X.: Image de-noising based on multi-wavelet. In: 2009 International Forum on Information Technology and Applications, Chengdu, China, pp. 523–525 (2009)

    Google Scholar 

  13. Bao, Q.Z., Gao, J.H., Chen, W.C.: Local adaptive shrinkage threshold denoising using curvelet coefficients. Electron. Lett. 14(4), 277–278 (2008)

    Article  Google Scholar 

  14. Cunha, A.L., Zhou, J., Do, M.N.: The nonsubsampled contourlet transform: Theory, design, and applications. IEEE Trans. Image Process. 15(10), 3089–3101 (2006)

    Article  Google Scholar 

  15. Mallat, S., LePennec, E.: Sparse geometric image representation with bandelets. IEEE Trans. Image Process. 14(4), 423–438 (2005)

    Article  MathSciNet  Google Scholar 

  16. Chen, G.Y., Kégl, B.: Image denoising with complex ridgelets. Pattern Recognit. 40(2), 578–585 (2007)

    Article  MATH  Google Scholar 

  17. Nguyen, T.T., Oraintara, S.: The shiftable complex directional pyramid—part I: theoretical aspects. IEEE Trans. Signal Process. 56(10), 4651–4660 (2008)

    Article  MathSciNet  Google Scholar 

  18. Karklin, Y., Lewicki, M.S.: A hierarchical Bayesian model for learning nonlinear statistical regularities in nonstationary natural signals. Neural Comput. 17(2), 397–423 (2005)

    Article  MATH  Google Scholar 

  19. Sęndur, L., Selesnick, I.W.: Bivariate shrinkage with local variance estimation. IEEE Signal Process Lett. 9(12), 438–441 (2002)

    Article  Google Scholar 

  20. Romberg, J.K., Choi, H., Baraniuk, R.G.: Bayesian tree structured image modeling using wavelet-domain hidden Markov models. IEEE Trans. Image Process. 10(7), 1056–1068 (2001)

    Article  Google Scholar 

  21. Fan, G., Xia, X.: Image denoising using local contextual hidden Markov model in the wavelet domain. IEEE Signal Process Lett. 8(5), 125–128 (2001)

    Article  MathSciNet  Google Scholar 

  22. Long, Z.L., Nicolas, H.Y.: Statistical image modeling in the contourlet domain using contextual hidden Markov models. Signal Process. 89(5), 946–951 (2009)

    Article  MATH  Google Scholar 

  23. Portilla, J., Strela, V., Wainwright, M.J., Simoncelli, E.P.: Image denoising using scale mixtures of Gaussians in the wavelet domain. IEEE Trans. Image Process. 12(11), 1338–1351 (2003)

    Article  MathSciNet  Google Scholar 

  24. Guerrero-Colon, J.A., Mancera, L., Portilla, J.: Image restoration using space-variant Gaussian scale mixture in overcomplete pyramids. IEEE Trans. Image Process. 17(1), 27–41 (2008)

    Article  MathSciNet  Google Scholar 

  25. Jason, A.P., Ken, K.D., Scott, M.: Probabilistic formulation of independent vector analysis using complex Gaussian scale mixture. In: Proceedings of the 8th International Conference on Independent Component Analysis and Signal Separation. Lecture Notes in Computer Science, vol. 5441, pp. 90–97 (2009)

    Google Scholar 

  26. Pizurica, A., Philips, W.: Estimating the probability of the presence of a signal of interest in multiresolution single-and multiband image denoising. IEEE Trans. Image Process. 15(3), 645–665 (2006)

    Article  Google Scholar 

  27. Hammond, D.K., Simoncelli, E.P.: Image modeling and denoising with orientation-adapted Gaussian scale mixtures. IEEE Trans. Image Process. 17(11), 2089–2101 (2008)

    Article  MathSciNet  Google Scholar 

  28. Simoncelli, E.P., Freeman, W.T.: The steerable pyramid: a flexible architecture for multiscale derivative computation. In: Proceedings of Second International Conference on Image Processing, Washington, DC, pp. 444–447 (1995)

    Chapter  Google Scholar 

  29. Castleman, K.R., Schulze, M., Wu, Q.: Simplified design of Steerable pyramid filters. In: The IEEE International Symposium on Circuits and Systems, Monterey, California, May 31–June 3, 1998

    Google Scholar 

  30. Zayezdny, A., Tabak, D., Wulich, D.: Engineering Applications of Stochastic Processes, 1st edn. Wiley, New York (1989)

    MATH  Google Scholar 

  31. Rahman, S.M.M., Ahmad, M.O., Swamy, M.N.S.: Locally adaptive wavelet-based image denoising using the Gram–Charlier prior function. In: Proceedings of IEEE International Conference Image Processing, San Antonio, TX, vol. 3, pp. 549–552 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Yang Wang.

Additional information

This work was supported by the National Natural Science Foundation of China under Grant No. 60773031 & 60873222; the Open Foundation of State Key Laboratory of Networking and Switching Technology of China under Grant No. SKLNST-2008-1-01; the Open Foundation of Network and Data Security Key Laboratory of Sichuan Province; the Open Foundation of Key Laboratory of Modern Acoustics Nanjing University under Grant No. 08-02; the Open Foundation of Key Laboratory of Advanced Design and Intelligent Computing, Ministry of Education; and Liaoning Research Project for Institutions of Higher Education of China under Grant No. L2010230 & 2008351.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XY., Zhao, L., Niu, PP. et al. Image Denoising Using Gaussian Scale Mixtures with Gaussian–Hermite PDF in Steerable Pyramid Domain. J Math Imaging Vis 39, 245–258 (2011). https://doi.org/10.1007/s10851-010-0238-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0238-y

Keywords

Navigation