Skip to main content
Log in

Robust Fitting of Circle Arcs

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Geometric fitting is present in different fields of sciences, engineering and astronomy. In particular, circular arc primitives are some of the most commonly employed geometric features in digital image analysis and visual pattern recognition. In this paper, a robust geometric method based on mean absolute error to fit a set of points is proposed. Most geometric and algebraic methods are sensitive to noise and outlier points and so the results are not usually acceptable. It is well known that the least absolute error criterion leads to robust estimations. However, the objective function is non differentiable and thus algorithms based on gradient cannot be applied. We propose an algorithm based on left and right side partial derivatives that is computationally efficient as an alternative to conventional algorithms, and evaluate the sensitivity of circle fits for different types of data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shunmugam, M.S.: Criteria for computer-aided form evaluation. J. Eng. Ind. 113, 233–238 (1991)

    Article  Google Scholar 

  2. Van-Ban, L., Lee, D.T.: Out-of-roundness problem revisited. IEEE Trans. Pattern Anal. Mach. Intell. 13, 217–23 (1991)

    Article  Google Scholar 

  3. Ventura, J.A., Yeralan, S.: The minimax centre estimation problem for automated roundness inspection. Eur. J. Oper. Res. 41, 64–72 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  4. Yeralan, S., Ventura, J.A.: Computerized roundness inspection. Int. J. Prod. Res. 26, 1921–1935 (1988)

    Article  Google Scholar 

  5. Schalk, P., Ofner, R., O’Leary, P.: Pipe eccentricity measurement using laser triangulation. Image Vis. Comput. 25, 1194–1203 (2007)

    Article  Google Scholar 

  6. Karimäki, V.: Effective circle fitting for particle trajectories. Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. Assoc. Equip. 305, 187–191 (1991)

    Article  Google Scholar 

  7. Joseph, S.H.: Unbiased least-squares fitting of circular arcs. Graph. Models Image Process. 56, 424–432 (1994)

    Article  Google Scholar 

  8. Ahn, S.J., Rauh, W., Warnecke, H.J.: Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola and parabola. Pattern Recognit. 34, 2283–2303 (2001)

    Article  MATH  Google Scholar 

  9. Rorres, C., Romano, D.G.: Finding the centre of a circular starting line in an ancient Greek Stadium. SIAM Rev. 39(4), 745–754 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Chernov, N., Sapirstein, P.N.: Fitting circles to data with correlated noise. Comput. Stat. Data Anal. 52, 5328–5337 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Paton, K.: Conic sections in chromosome analysis. Pattern Recognit. 2, 39–51 (1970)

    Article  Google Scholar 

  12. Corral, C.A., Lindquist, C.S.: On Implementing Kåsa’s circle fit procedure. IEEE Trans. Instrum. Meas. 47, 789–795 (1998)

    Article  Google Scholar 

  13. Gander, W., Golub, G.H., Strebel, R.: Least-square fitting of circles and ellipses. BIT Numer. Math. 43, 558–578 (1994)

    MathSciNet  Google Scholar 

  14. Calafiore, G.: Approximation of n-dimensional data using spherical and ellipsoidal primitives. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 32, 269–278 (2002)

    Article  Google Scholar 

  15. Kåsa, I.: A curve fitting procedure and its error analysis. IEEE Trans. Instrum. Meas. 25, 8–14 (1976)

    Google Scholar 

  16. Zelniker, E.E., Clarkson, I.V.L.: A statistical analysis of the Delogne-Kåsa method for fitting circles. Digit. Signal Process. 16, 498–522 (2006)

    Article  Google Scholar 

  17. Landau, U.M.: Estimation of a circular arc centre and its radius. Comput. Vis. Graph. Image Process. 38, 317–326 (1987)

    Article  Google Scholar 

  18. Späth, H.: Least-squares fitting by circles. Computing 57, 179–185 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Chernov, N., Lesort, C.: Least squares fitting of circles. J. Math. Imaging Vis. 23, 239–252 (2005)

    Article  MathSciNet  Google Scholar 

  20. Drezner, Z., Steiner, S., Wesolowsky, G.O.: On the circle closet to a set of points. Comput. Oper. Res. 29, 637–650 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Plastria, F.: GBSSS, the generalized big square small square method for planar single facility location. Eur. J. Oper. Res. 62, 163–174 (1992)

    Article  MATH  Google Scholar 

  22. Hansen, P., Peeters, D., Richard, D., Thisse, J.F.: The minisum and minimax location problems revisited. Oper. Res. 33, 1251–1265 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  23. Umbach, D., Jones, K.N.: A few methods for fitting circles to data. IEEE Trans. Instrum. Meas. 52, 1881–1885 (2003)

    Article  Google Scholar 

  24. Caudill, S.B.: Estimating the circle closest to a set of points by maximum likelihood using the BHHH algorithm. Eur. J. Oper. Res. 172, 120–126 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Berndt, E.R., Hall, B.H., Hall, R.E., Hausman, J.A.: Estimation and Inference in nonlinear structural models. Ann. Econ. Soc. Meas. 3, 653–665 (1974)

    Google Scholar 

  26. Al-Sharadqah, A., Chernov, N.: Error analysis for circle fitting algorithms. Electron. J. Stat. 3, 886–911 (2009)

    Article  MathSciNet  Google Scholar 

  27. Rangarajan, P., Kanatani, K.: Improved algebraic methods for circle fitting. Electron. J. Stat. 3, 1075–1082 (2009)

    Article  MathSciNet  Google Scholar 

  28. Fischler, M.A., Bolles, R.C.: Random sample consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  29. Fourer, R., Gay, D.M., Kernighan, B.W.: Ampl. A Modelling Language for Mathematical Programming. The Scientific Press, San Francisco (1993)

    Google Scholar 

  30. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

  31. Coope, I.D.: Circle fitting by linear and nonlinear least squares. J. Optim. Theory Appl. 76, 381–388 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  32. Gruntz, D.: Finding the best fit circle. MathWorks Newsl. 1, 5 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Blázquez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ladrón de Guevara, I., Muñoz, J., de Cózar, O.D. et al. Robust Fitting of Circle Arcs. J Math Imaging Vis 40, 147–161 (2011). https://doi.org/10.1007/s10851-010-0249-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-010-0249-8

Keywords

Navigation