Skip to main content
Log in

Image Morphing in Frequency Domain

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Image morphing is often used in film and television industry to create synthetic visual effects by smooth transformation of one object into another. Based upon spatial representation of images, several image morphing techniques have been proposed. Simple spatial techniques, for example cross-dissolve, suffer from lack of smooth transformation while better quality techniques, like mesh warping or field warping, have significant computational complexity. In this paper we present a simple but good quality image morphing technique based upon frequency domain representation of images. Transformation from a source image to a target image takes place by mixing low frequencies of the source image and high frequencies of the target image in varying proportions. The proposed technique has been applied to a wide variety of images. The resulting sequence of images are better in visual quality and faster in execution time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aboul-Ella, H., Karam, H., Nakajima, M.: Image metamorphosis transformation of facial images based on elastic body splines. Signal Process. 70, 129–137 (1998)

    Article  MATH  Google Scholar 

  2. Arsigny, V., Commowick, O., Ayache, N., Pennec, X.: A fast and log-Euclidean polyaffine framework for locally linear registration. J. Math. Imaging Vis. 33, 222–238 (2009)

    Article  MathSciNet  Google Scholar 

  3. Bigot, J., Gadat, S., Loubes, J.M.: Statistical m-estimation and consistency in large deformable models for image warping. J. Math. Imaging Vis. 34, 270–290 (2009)

    Article  MathSciNet  Google Scholar 

  4. Che, W., Yang, X., Wang, G.: Skeleton-driven 2d distance field metamorphosis using intrinsic shape parameters. Graph. Models 66, 261–261 (2004)

    Article  Google Scholar 

  5. Chen, W.H., Smith, C., Fralick, S.: A fast computational algorithm for the discrete cosine transform. Commun., IEEE Trans. 25(9), 1004–1009 (1977)

    Article  MATH  Google Scholar 

  6. Dykstra, C., Celler, A., Greer, K., Jaszczak, R.: The use of image morphing to improve the detection of tumors in emission imaging. Nucl. Sci., IEEE Trans. 46(3), 673–679 (1999)

    Article  Google Scholar 

  7. Faria, L.N., Mascarenhas, N.D.A., Morón, C.E., Saito, J.H., Rosa, R.R., Sawant, H.S.: A parallel application for 3d reconstruction of coronal loops using image morphing. Image Vis. Comput. 25(1), 95–102 (2007). SIBGRAPI

    Article  Google Scholar 

  8. Frigo, M., Johnson, S.: The design and implementation of fftw3. Proc. IEEE 93(2), 216–231 (2005)

    Article  Google Scholar 

  9. Fuchs, M., Jüttler, B., Scherzer, O., Yang, H.: Shape metrics based on elastic deformations. J. Math. Imaging Vis. 35, 86–102 (2009)

    Article  Google Scholar 

  10. Gong, M., Yang, Y.H.: Layer-based morphing. Graph. Models 63, 45–59 (2001)

    Article  MATH  Google Scholar 

  11. González, J., Arévalo, V.: Mesh topological optimization for improving piecewise-linear image registration. J. Math. Imaging Vis. 37, 166–182 (2010)

    Article  Google Scholar 

  12. Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall, Upper Saddle River (2006)

    Google Scholar 

  13. Gotsman, C., Surazhsky, V.: Guaranteed intersection-free polygon morphing. Comput. Graph. 25(1), 67–75 (2001)

    Article  Google Scholar 

  14. Hagege, R., Francos, J.M.: Parametric estimation of affine transformations: an exact linear solution. J. Math. Imaging Vis. 37, 1–16 (2010)

    Article  MathSciNet  Google Scholar 

  15. Johan, H., Koiso, Y., Nishita, T.: Morphing using curves and shape interpolation techniques. In: Proceedings of the 8th Pacific Conference on Computer Graphics and Applications (PG ’00), p. 348. (2000)

    Chapter  Google Scholar 

  16. Kang, J.Y., Lee, B.S.: Mesh-based morphing method for rapid hull form generation. Comput. Aided Des. 42, 970–976 (2010)

    Article  Google Scholar 

  17. Karam, H., Hassanien, A., Nakajima, M.: Feature-based image metamorphosis optimization algorithm. In: Proceedings of the Seventh International Conference on Virtual Systems and Multimedia (VSMM’01), pp. 553–554 (2001)

    Google Scholar 

  18. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: Active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  19. Krüger, W.: Robust and efficient map-to-image registration with line segments. Mach. Vis. Appl. 13, 38–50 (2001)

    Article  Google Scholar 

  20. Larrey-Ruiz, J., Verdú-Monedero, R., Morales-Sánchez, J.: A fourier domain framework for variational image registration. J. Math. Imaging Vis. 32, 57–72 (2008)

    Article  Google Scholar 

  21. Lee, S.Y., Chwa, K.Y., Shin, S.Y.: Image metamorphosis using snakes and free-form deformations. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’95), pp. 439–448 (1995)

    Chapter  Google Scholar 

  22. Lee, S., Woberg, G., Chwa, K.Y., Shin, S.Y.: Image metamorphosis with scattered feature constraints. IEEE Trans. Vis. Comput. Graph. 2, 337–354 (1996)

    Article  Google Scholar 

  23. Lee, S., Wolberg, G., Shin, S.Y.: Scattered data interpolation with multilevel b-splines. IEEE Trans. Vis. Comput. Graph. 3, 228–244 (1997)

    Article  Google Scholar 

  24. Lee, S., Wolberg, G., Shin, S.Y.: Polymorph: morphing among multiple images. IEEE Comput. Graph. Appl. 18, 58–71 (1998)

    Google Scholar 

  25. Lee, S.-Y., Chwa, K.-Y., Hahn, J., Shin, S.Y.: Image morphing using deformation techniques. Visualization and Computer Animation 7

  26. Manning, R.A., Dyer, C.R.: Dynamic view morphing. In: Proc. SIGGRAPH 96, pp. 21–30 (1996)

    Google Scholar 

  27. Oliva, A., Torralba, A., Schyns, P.G.: Hybrid images. In: ACM SIGGRAPH 2006 Papers (SIGGRAPH ’06), pp. 527–532 (2006)

    Chapter  Google Scholar 

  28. Park, S.Y., Choi, S.I., Kim, J., Chae, J.: Real-time 3d registration using GPU. Mach. Vis. Appl. 1–14

  29. Reyes-Lozano, L., Medioni, G., Bayro-Carrochano, E.: Registration of 2d points using geometric algebra and tensor voting. J. Math. Imaging Vis. 37, 249–266 (2010)

    Article  MathSciNet  Google Scholar 

  30. Ruprecht, D., Müller, H.: Image warping with scattered data interpolation. IEEE Comput. Graph. Appl. 15, 37–43 (1995)

    Article  Google Scholar 

  31. Seitz, S.: Bringing photographs to life with view morphing. In: Proc. Imagina 97 Conf, pp. 153–158 (1997)

    Google Scholar 

  32. Seitz, S.M., Dyer, C.R.: Physically-valid view synthesis by image interpolation. In: Proc. IEEE Workshop on Representations of Visual Scenes, pp. 18–25 (1995)

    Chapter  Google Scholar 

  33. Seitz, S.M., Dyer, C.R.: Toward image-based scene representation using view morphing. In: Proc. 13th Int. Conf. on Pattern Recognition, pp. 84–89 (1996)

    Chapter  Google Scholar 

  34. Seitz, S.M., Dyer, C.R.: View morphing. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH ’96), pp. 21–30 (1996)

    Chapter  Google Scholar 

  35. Singh, R., Papanikolopoulos, N.P.: Planar shape recognition by shape morphing. Pattern Recognit. 33(10), 1683–1699 (2000)

    Article  Google Scholar 

  36. Wang, W.H., Chen, Y.C.: Image registration by control points pairing using the invariant properties of line segments. Pattern Recognit. Lett. 18, 269–281 (1997)

    Article  Google Scholar 

  37. Whitaker, R.T.: A level-set approach to image blending. IEEE Trans. Image Process. 9(11), 1849–1861 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  38. Wolberg, G.: Digital Image Warping, 1st edn. IEEE Computer Society Press, Los Alamitos (1994)

    Google Scholar 

  39. Wolberg, G.: Image morphing: a survey. Vis. Comput. 14(8–9), 360–372 (1998)

    Article  Google Scholar 

  40. Xiao, J., Shah, M.: From images to video: view morphing of three images. In: VMV, pp. 495–502 (2003)

    Google Scholar 

  41. Xiao, J., Shah, M.: Tri-view morphing. Comput. Vis. Image Underst. 96, 345–366 (2004)

    Article  Google Scholar 

  42. Xu, C., Prince, J.L.: Snakes shapes, and gradient vector flow. IEEE Trans. Image Process. 7(3), 359–369 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  43. Yang, W., Feng, J.: Technical section: 2d shape morphing via automatic feature matching and hierarchical interpolation. Comput. Graph. 33, 414–423 (2009)

    Article  MathSciNet  Google Scholar 

  44. Zhu, L., Yang, Y., Haker, S., Tannenbaum, A.: An image morphing technique based on optimal mass preserving mapping. IEEE Trans. Image Process. 16(6), 1481–1495 (2007). doi:10.1109/TIP.2007.896637

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Shahid Farid.

Additional information

This work was partially supported by a research grant from University of the Punjab, Lahore. We are thankful to the VC of the University of the Punjab, Prof. Dr. Mujahid Kamran for approving this research grant to carry out this research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farid, M.S., Mahmood, A. Image Morphing in Frequency Domain. J Math Imaging Vis 42, 50–63 (2012). https://doi.org/10.1007/s10851-011-0273-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-011-0273-3

Keywords

Navigation