Skip to main content
Log in

Visual Servoing of Legged Robots

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We build and test a Visual Servoing for all degrees of freedom of a legged robot. We provide a detailed geometrical description relevant to the construction of the Jacobian matrix containing the dependencies of the visual features on the robot joint angles. This matrix embodies the forward kinematics model. To obtain an autonomous control system invariant to world position, we define the ground reference system relative to the basic support points. The control of the robot is computed by the inversion of the forward kinematics model, with two corrections. First, to preserve the ground reference system we must correct the motion of the supporting points. Second, we test a stability condition to avoid the robot to move into unstable configurations. We have tested the approach on a controlled environment to assess its real life performance. The experimental results show the robustness of the approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Altendorfer, R., Koditschek, D.E., Holmes, P.: Towards a factored analysis of legged locomotion models. In: IEEE International Conference on Robotics and Automation, 2003. Proceedings ICRA ’03, vol. 1, pp. 37–44 (2003)

    Chapter  Google Scholar 

  2. Bretl, T., Lall, S.: Testing static equilibrium for legged robots. IEEE Trans. Robot. 24(4), 794–807 (2008)

    Article  Google Scholar 

  3. Chalup, S.K., Murch, C.L., Quinlan, M.J.: Machine learning with Aibo robots in the four-legged league of RoboCup. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 37(3), 297–310 (2007)

    Article  Google Scholar 

  4. Cherubini, A., Giannone, F., Iocchi, L., Nardi, D., Palamara, P.F.: Policy gradient learning for quadruped soccer robots. Robot. Auton. Syst. 58(7), 872–8787 (2010)

    Article  Google Scholar 

  5. Colombo, C., Kruse, E., Sabatini, A.M., Dario, P.: Vision-based relative positioning through active fixation and contour tracking. In: Proceedings 2nd International Symp. on Intelligent Robotic Systems, SIRS’94, Grenoble, France, July, pp. 319–325 (1994)

    Google Scholar 

  6. Corke, P.: Visual Control of Robot Manipulators—A Review. Robotics and Automated Systems, vol. 7, pp. 1–31. World Scientific, Singapore (1993)

    Google Scholar 

  7. Sony Corporation: OPEN-R SDK model information for ERS-7 (2003)

  8. Coste-Manière, E., Couvignou, P., Khosla, P.K.: Visual servoing in the task-function framework: a contour following task. J. Intell. Robot. Syst. 12(1), 1–21 (1995)

    Article  Google Scholar 

  9. Deakin, G.J.: Legged robots. Prod. Eng. 64(9), 8 (1985)

    Google Scholar 

  10. Echegoyen, Z., d’Anjou, A., Graña, M.: Contribution to legged robot visual servoing. In: Apolloni, B., Howlett, R.J., Jain, L. (eds.) Knowledge-Based Intelligent Information and Engineering Systems, KES 2007. LNAI, vol. 4693, pp. 1179–1186. Springer, Berlin (2007)

    Chapter  Google Scholar 

  11. Echegoyen, Z., d’Anjou, A., Graña, M.: Modeling a legged robot for visual servoing. In: Gervasi, O., Gavrilova, M.L. (eds.) Computational Science and Its Applications—ICCSA 2007. LNCS, vol. 4707, pp. 798–810. Springer, Berlin (2007)

    Chapter  Google Scholar 

  12. Espiau, B., Chaumette, F., Rives, P.: A new approach to visual servoing in robotics. IEEE Trans. Robot. Autom. 8, 313–326 (1992)

    Article  Google Scholar 

  13. Go, Y., Xiaolei, Y., Bowling, A.: Navigability of multi-legged robots. IEEE/ASME Trans. Mechatron. 11(1), 1–8 (2006)

    Article  Google Scholar 

  14. Graña, M., Torrealdea, F.J.: Hierarchically structured systems. Eur. J. Oper. Res. 25, 20–26 (1986)

    Article  Google Scholar 

  15. Hager, G.: The “xvision” system: a general purpose substrate for real-time vision-based robotics. In: Proceedings of the Workshop on Vision for Robotics, pp. 56–63 (1995)

    Google Scholar 

  16. Hill, J., Park, W.T.: Real-time control of a robot with a mobile camera. In: Proceedings of the 9th ISIR, Washington, DC, March, pp. 233–246 (1979)

    Google Scholar 

  17. Hoff, J., Bekey, G.A.: A cerebellar approach to adaptive locomotion for legged robots. In: 1997 IEEE International Symposium on Computational Intelligence in Robotics and Automation, CIRA’97 Proceedings, July, pp. 94–100 (1997)

    Google Scholar 

  18. Hornby, G.S., Takamura, S., Yamamoto, T., Fujita, M.: Autonomous evolution of dynamic gaits with two quadruped robots. IEEE Trans. Robot. 21(3), 402–410 (2005)

    Article  Google Scholar 

  19. Hosoda, K., Kamado, M., Asada, M.: Vision-based servoing control for legged robots. In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 3154–3159 (1997)

    Google Scholar 

  20. Hosoda, K., Miyashita, T., Takeuchi, S., Asada, M.: Adaptive visual servoing for legged robots-vision-cued swaying oflegged robots in unknown environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 778–784 (1997)

    Google Scholar 

  21. Hutchinson, S., Hager, G.D., Corke, P.I.: A tutorial on visual servo control. IEEE Trans. Robot. Autom. 12(5), 651–670 (1996)

    Article  Google Scholar 

  22. Kitano, H., Fujita, M., Zrehen, S., Kageyama, K.: Sony legged robot for RoboCup challenge. In: 1998 IEEE International Conference on Robotics and Automation, Proceedings, May, vol. 3, pp. 2605–2612 (1998)

    Google Scholar 

  23. Krasny, D.P., Orin, D.E.: Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(4), 1685–1696 (2004)

    Article  Google Scholar 

  24. Prajoux, R., de Martins, L.S.F.: A walk supervisor architecture for autonomous four-legged robots embedding real-time decision-making. In: Proceedings of the 1996 IEEE/RSJ International Conference on Intelligent Robots and Systems ’96, IROS 96, November, vol. 1, pp. 200–207 (1996)

    Chapter  Google Scholar 

  25. Quinlan, M., Murch, C., Moore, T., Middleton, R., Li, L., King, R., Chalup, S.: The 2004 nubots team report. Technical report (2004)

  26. Raibert, M.H., Tello, E.R.: Legged robots that balance. IEEE Expert 1(4), 89–89 (1986)

    Article  Google Scholar 

  27. Rives, P., Chaumette, F., Espiau, B.: Visual servoing based on a task function approach. In: Experimental Robotics I, Proceedings of the First International Symposium on Experimental Robotics, Montreal, Canada, June, pp. 412–428 (1990)

    Google Scholar 

  28. Rosen, C., Nitzan, D., Agin, G., Bavarsky, A., Gleason, G., Hill, J., McGhie, D., Park, W.: Machine intelligence research applied to industrial automation. Technical Report NSF Grant APR-75-13074, SRI Project 4391, 6th Report, SRI International, Menlo Park, CA, November 1976

  29. Rosen, C., Nitzan, D., Agin, G., Bavarsky, A., Gleason, G., Hill, J., McGhie, D., Park, W.: Machine intelligence research applied to industrial automation. Technical report, 8th Report, SRI International, August 1978

  30. Röfer, Th., Burkhard, H.-D., Düert, U., Homann, J., Göhring, D., Jüngel, M., Lötzsch, M., v. Stryk, O., Brunn, R., Kallnik, M., Kunz, M., Petters, S., Risler, M., Stelzer, M., Dahm, I., Wachter, M., Engel, K., Osterhues, A., Schumann, C., Ziegler, J.: Germanteam robocup 2003. Technical report, http://www.robocup.de/germanteam/GT2003.pdf, 2003

  31. Samson, C., Le Borgne, M., Espiau, B.: Robot control: the task function approach. In: Oxford Engineering Science Series, vol. 22, 1st edn. Clarendon Press, Oxford University Press, Oxford (1991)

    Google Scholar 

  32. Sanderson, A.C., Weiss, L.E.: Image-based visual servo control using relational graph error signals. In: Proceedings of the IEEE International Conference on Cybernetics and Society, vol. 1, pp. 1074–1077 (1980)

    Google Scholar 

  33. Shirai, Y., Inoue, H.: Guiding a robot by visual feedback in assembling tasks. Pattern Recognit. 5(2), 99–108 (1973)

    Article  Google Scholar 

  34. Tira-Thompson, E.J.: Tekkotsu: A rapid development framework for robotics. Master’s thesis, Carnegie Mellon University, Pittsburgh, PA (2004)

  35. Veloso, M., Uther, W., Fijita, M., Asada, M., Kitano, H.: Playing soccer with legged robots. In: 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, Proceedings, October, vol. 1, pp. 437–442 (1998)

    Google Scholar 

  36. Weiss, L.E.: Dynamic visual servo control of robots: an adaptive image-based approach. PhD thesis, Carnegie-Mellon University, April 1984

  37. Wichman, W.M.: Use of optical feedback in the computer control of an arm. Technical report, Standford AI project, AI memo 55, August 1967

  38. Yang, J.-M.: Fault-tolerant gaits of quadruped robots for locked joint failures. IEEE Trans. Syst. Man Cybern., Part C, Appl. Rev. 32(4), 507–516 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. Echegoyen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Echegoyen, Z., Lopez-Guede, J.M., Fernandez-Gauna, B. et al. Visual Servoing of Legged Robots. J Math Imaging Vis 42, 196–211 (2012). https://doi.org/10.1007/s10851-011-0286-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-011-0286-y

Keywords

Navigation