Skip to main content
Log in

The Kosko Subsethood Fuzzy Associative Memory (KS-FAM): Mathematical Background and Applications in Computer Vision

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Many well-known fuzzy associative memory (FAM) models can be viewed as (fuzzy) morphological neural networks (MNNs) because they perform an operation of (fuzzy) mathematical morphology at every node, possibly followed by the application of an activation function. The vast majority of these FAMs represent distributive models given by single-layer matrix memories. Although the Kosko subsethood FAM (KS-FAM) can also be classified as a fuzzy morphological associative memory (FMAM), the KS-FAM constitutes a two-layer non-distributive model.

In this paper, we prove several theorems concerning the conditions of perfect recall, the absolute storage capacity, and the output patterns produced by the KS-FAM. In addition, we propose a normalization strategy for the training and recall phases of the KS-FAM. We employ this strategy to compare the error correction capabilities of the KS-FAM and other fuzzy and gray-scale associative memories in terms of some experimental results concerning gray-scale image reconstruction. Finally, we apply the KS-FAM to the task of vision-based self-localization in robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Araújo, R.A., Ferreira, T.A.E.: A morphological-rank-linear evolutionary method for stock market prediction. Inf. Sci. (2010, in press). doi:10.1016/j.ins.2009.07.007

  2. Araújo, R.A., Madeiro, F., Sousa, R.P., Pessoa, L.F.C., Ferreira, T.A.E.: An evolutionary morphological approach for financial time series forecasting. In: Proceedings of the IEEE Congress on Evolutionary Computation, Vancouver, Canada, pp. 2467–2474 (2006)

    Google Scholar 

  3. Baczynski, M., Jayaram, B.: Fuzzy implications. In: Studies in Fuzziness and Soft Computing. Springer, Berlin (2008)

    Google Scholar 

  4. Banon, G.J.F., Barrera, J.: Decomposition of mappings between complete lattices by mathematical morphology. Part 1. General lattices. Signal Process. 30(3), 299–327 (1993)

    Article  MATH  Google Scholar 

  5. Bargiela, A., Pedrycz, W.: Granular Computing: An Introduction. Kluwer Academic, Dordrecht (2003)

    MATH  Google Scholar 

  6. Belohlávek, R.: Fuzzy logical bidirectional associative memory. Inf. Sci. 128(1–2), 91–103 (2000)

    Article  MATH  Google Scholar 

  7. Birkhoff, G.: Lattice Theory. American Mathematical Society, Providence (1993)

    Google Scholar 

  8. Cuninghame-Green, R.: Minimax Algebra. Lecture Notes in Economics and Mathematical Systems, vol. 166. Springer, New York (1979)

    MATH  Google Scholar 

  9. Cuninghame-Green, R.: Minimax algebra and applications. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, pp. 1–121. Academic Press, San Diego (1995)

    Google Scholar 

  10. Davidson, J.L.: Foundation and applications of lattice transforms in image processing. In: Hawkes, P. (ed.) Advances in Electronics and Electron Physics, vol. 84, pp. 61–130. Academic Press, San Diego (1992)

    Google Scholar 

  11. Davidson, J.L., Hummer, F.: Morphology, neural networks: an introduction with applications. Circuits Syst. Signal Process. 12(2), 177–210 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  12. Deng, T.Q., Heijmans, H.J.A.M.: Grey-scale morphology based on fuzzy logic. J. Math. Imaging Vis. 16(2), 155–171 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  13. Esmi, E.L., Sussner, P.: A fuzzy associative memory based on Kosko’s subsethood measure. In: Proceedings of the 2010 IEEE World Congress on Computational Intelligence (IJCNN), Barcelona, Spain, pp. 144–151 (2010)

    Google Scholar 

  14. Fuller, R.: Introduction to Neuro-Fuzzy Systems. Springer, New York (2000)

    MATH  Google Scholar 

  15. Gader, P.D., Khabou, M., Koldobsky, A.: Morphological regularization neural networks. Pattern Recognit. 33(6), 935–945 (2000). Special Issue on Mathematical Morphology and Its Applications

    Article  Google Scholar 

  16. Graña, M., Savio, A.M., Garcia-Sebastian, M., Fernandez, E.: A lattice computing approach for on-line fMRI analysis. Image Vis. Comput. 28(7), 1155–1161 (2010)

    Article  Google Scholar 

  17. Graña, M., Chyzhyk, D., Garcia-Sebastian, M., Hernandez, C.: Lattice independent component analysis for functional magnetic resonance imaging. Inf. Sci. 181(10), 1910–1929 (2011)

    Article  Google Scholar 

  18. Grätzer, G.A.: Lattice Theory: First Concepts and Distributive Lattices. Freeman, New York (1971)

    MATH  Google Scholar 

  19. Hassoun, M.H., Watta, P.B.: The Hamming associative memory and its relation to the exponential capacity DAM. IEEE Int. Conf. Neural Netw. 1, 583–587 (1996)

    Google Scholar 

  20. Heijmans, H.J.A.M.: Morphological Image Operators. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  21. Højen-Sørensen, P., Winther, O., Hansen, L.K.: Mean-field approaches to independent component analysis. Neural Comput. 14(4), 889–918 (2002)

    Article  Google Scholar 

  22. Image Database for Simulations Concerning Vision-Based Self-Localization in Mobile Robotics. Available at http://www.ehu.es/ccwintco/index.php/Pioneer. Computational Intelligence Group, University of the Basque Country, San Sebastián, Spain

  23. Internet Site of the Math. Imaging and Comp. Intelligence Group. http://www.milab.ime.unicamp.br, Dept. of Applied Math., University of Campinas

  24. Jones, S.D., Andresen, C., Crowley, J.L.: Appearance based process for visual navigation. In: Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 1997), vol. 2, pp. 551–557 (1997)

    Google Scholar 

  25. Junbo, F., Fan, J., Yan, S.: A learning rule for fuzzy associative memories. In: Proceedings of the IEEE International Joint Conference on Neural Networks, vol. 7, pp. 4273–4277 (1994)

    Google Scholar 

  26. Kaburlasos, V.G.: FINs: lattice theoretic tools for improving prediction of sugar production from populations of measurements. IEEE Trans. Syst. Man Cybern., Part B, Cybern. 34(2), 1017–1030 (2004)

    Article  Google Scholar 

  27. Kaburlasos, V.G.: Towards a Unified Modeling and Knowledge-Representation Based on Lattice Theory: Computational Intelligence and Soft Computing Applications. Studies in Computational Intelligence. Springer, New York (2006)

    Google Scholar 

  28. Kaburlasos, V.G., Papadakis, S.E.: A granular extension of the fuzzy-ARTMAP (FAM) neural classifier based on fuzzy lattice reasoning (FLR). Neurocomputing 72(10–12), 2067–2078 (2009)

    Article  Google Scholar 

  29. Kaburlasos, V.G., Petridis, V.: Fuzzy lattice neurocomputing (FLN) models. Neural Netw. 13(10), 1145–1170 (2000)

    Article  Google Scholar 

  30. Kaburlasos, V.G., Athanasiadis, I.N., Mitkas, P.A.: Fuzzy lattice reasoning (FLR) classifier and its application for ambient ozone estimation. Int. J. Approx. Reason. 45(1), 152–188 (2007)

    Article  MATH  Google Scholar 

  31. Khabou, M.A., Gader, P.D., Shi, H.: Entropy optimized morphological shared-weight neural networks. Opt. Eng. 38(2), 263–273 (1999)

    Article  Google Scholar 

  32. Khabou, M.A., Gader, P.D., Keller, J.M.: LADAR target detection using morphological shared-weight neural networks. Mach. Vis. Appl. 11(6), 300–305 (2000)

    Article  Google Scholar 

  33. Kohonen, T.: Self-Organization and Associative Memory. Springer, Berlin (1984)

    MATH  Google Scholar 

  34. Kong, S.-G., Kosko, B.: Adaptive fuzzy systems for backing up a truck-and-trailer. IEEE Trans. Neural Netw. 3(2), 211–223 (1992)

    Article  Google Scholar 

  35. Kosko, B.: Neural Networks and Fuzzy Systems: A Dynamical Systems Approach to Machine Intelligence. Prentice Hall, New York (1992)

    MATH  Google Scholar 

  36. Krose, B.J.A., Vlassis, N., Bunschoten, R., Motomura, Y.: A probabilistic model for appearance-based robot localization. Image Vis. Comput. 6(19), 381–391 (2001)

    Article  Google Scholar 

  37. Lippmann, R.P.: An introduction to computing with neural nets. IEEE Trans. Acoust. Speech Signal Process. ASSP-4, 4–22 (1987)

    Google Scholar 

  38. Liu, P.: The fuzzy associative memory of max-min fuzzy neural networks with threshold. Fuzzy Sets Syst. 107, 147–157 (1999)

    Article  MATH  Google Scholar 

  39. Liu, H., Xiong, S., Fang, Z.: FL-GrCCA: a granular computing classification algorithm based on fuzzy lattices. Comput. Math. Appl. 61, 138–147 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  40. Matheron, G.: Random Sets and Integral Geometry. Wiley, New York (1975)

    MATH  Google Scholar 

  41. Molgedey, L., Schuster, H.G.: Separation of a mixture of independent signals using time delayed correlations. Phys. Rev. Lett. 72, 3634–3637 (1994)

    Article  Google Scholar 

  42. Nachtegael, M., Kerre, E.E.: Connections between binary, gray-scale and fuzzy mathematical morphologies. Fuzzy Sets Syst. 124(1), 73–85 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Pessoa, L.F.C., Maragos, P.: Neural networks with hybrid morphological/rank/linear nodes: a unifying framework with applications to handwritten character recognition. Pattern Recognit. 33, 945–960 (2000)

    Article  Google Scholar 

  44. Petridis, V., Kaburlasos, V.G.: Fuzzy lattice neural network (FLNN): a hybrid model for learning. IEEE Trans. Neural Netw. 9(5), 877–890 (1998)

    Article  Google Scholar 

  45. Raducanu, B., Graña, M., Sussner, P.: Morphological neural networks for vision based self-localization. In: Proceedings of the 2001 IEEE International Conference on Robotics and Automation (ICRA 2001), vol. 2, pp. 2059–2064 (2001)

    Google Scholar 

  46. Ritter, G.X., Sussner, P.: An introduction to morphological neural networks. In: Proceedings of the 13th International Conference on Pattern Recognition, Vienna, Austria, pp. 709–717 (1996)

    Chapter  Google Scholar 

  47. Ritter, G.X., Sussner, P., Diaz de Leon, J.L.: Morphological associative memories. IEEE Trans. Neural Netw. 9(2), 281–293 (1998)

    Article  Google Scholar 

  48. Ronse, C.: Why mathematical morphology needs complete lattices. Signal Process. 21(2), 129–154 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  49. Serra, J.: Image Analysis and Mathematical Morphology. Academic Press, San Diego (1982)

    MATH  Google Scholar 

  50. Serra, J.: Image Analysis and Mathematical Morphology. Theoretical Advances, vol. 2. Academic Press, San Diego (1988)

    Google Scholar 

  51. Soille, P.: Morphological Image Analysis. Springer, Berlin (1999)

    MATH  Google Scholar 

  52. Sussner, P.: Generalizing operations of binary morphological autoassociative memories using fuzzy set theory. J. Math. Imaging Vis. 9(2), 81–93 (2003)

    Article  MathSciNet  Google Scholar 

  53. Sussner, P.: Associative morphological memories based on variations of the kernel and dual kernel methods. Neural Netw. 16(5), 625–632 (2003)

    Article  Google Scholar 

  54. Sussner, P., Esmi, E.L.: An Introduction to the Kosko subsethood FAM. In: Proc. of the 5th Int. Conf. on Hybrid Artificial Intelligence Systems. Lecture Notes in Computer Science, vol. 6077, pp. 343–350. Springer, Berlin (2010)

    Chapter  Google Scholar 

  55. Sussner, P., Esmi, E.L.: Morphological perceptrons with competitive learning: lattice-theoretical framework and constructive learning algorithm. Inf. Sci. 181(10), 1929–1950 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Sussner, P., Valle, M.E.: Implicative fuzzy associative memories. IEEE Trans. Fuzzy Syst. 14(6), 793–807 (2006)

    Article  Google Scholar 

  57. Sussner, P., Valle, M.E.: Grayscale morphological associative memories. IEEE Trans. Neural Netw. 17(3), 559–570 (2006)

    Article  Google Scholar 

  58. Sussner, P., Valle, M.E.: Morphological and certain fuzzy morphological associative memories with applications in classification and prediction. In: Kaburlasos, V.G., Ritter, G.X. (eds.) Computational Intelligence Based on Lattice Theory, vol. SCI-67, pp. 149–173. Springer, Berlin (2007)

    Chapter  Google Scholar 

  59. Sussner, P., Valle, M.E.: Fuzzy associative memories and their relationship to mathematical morphology. In: Pedrycz, W., Skowron, A., Kreinovich, V. (eds.) Handbook of Granular Computing. Wiley, New York (2008), Chap.  33

    Google Scholar 

  60. Sussner, P., Valle, M.E.: Classification of fuzzy mathematical morphologies based on concepts of inclusion measure and duality. J. Math. Imaging Vis. 32(2), 139–159 (2008)

    Article  MathSciNet  Google Scholar 

  61. Tanaka, G., Aihara, K.: Complex-valued multistate associative memory with nonlinear multilevel functions for gray-level image reconstruction. In: IEEE International Joint Conference on Neural Networks, pp. 3086–3092 (2008)

    Google Scholar 

  62. Valle, M.E., Sussner, P.: A general framework for fuzzy morphological associative memories. Fuzzy Sets Syst. 159(7), 747–768 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  63. Valle, M.E., Sussner, P.: Storage and recall capabilities of fuzzy morphological associative memories with adjunction-based learning. Neural Netw. 24(1), 75–90 (2011)

    Article  MATH  Google Scholar 

  64. Villaverde, I., D’Anjou, A., Graña, M.: Morphological neural networks and vision based simultaneous localization and mapping. Integr. Comput.-Aided Eng. 14(4), 355–363 (2007)

    Google Scholar 

  65. Villaverde, I., Fernandez-Gauna, B., Zulueta, E.: Lattice independent component analysis for mobile robot localization. In: Proc. of the 5th Int. Conf. on Hybrid Artificial Intelligence Systems. Lecture Notes in Computer Science, vol. 6077, pp. 335–342. Springer, Berlin (2010)

    Chapter  Google Scholar 

  66. Zhang, B.-L., Zhang, H., Ge, S.S.: Face recognition by applying wavelet subband representation and kernel associative memory. IEEE Trans. Neural Netw. 15(1), 166–177 (2004)

    Article  MathSciNet  Google Scholar 

  67. Zivkovic, Z., Bakker, B., Krose, B.J.A.: Hierarchical map building using visual landmarks and geometric constraints. In: Proceedings of the 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2005), pp. 2480–2485 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sussner.

Additional information

This work was partially supported by CNPq under grant no. 309608/2009-0 and by FAPESP under grant no. 2009/16284-2.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sussner, P., Esmi, E.L., Villaverde, I. et al. The Kosko Subsethood Fuzzy Associative Memory (KS-FAM): Mathematical Background and Applications in Computer Vision. J Math Imaging Vis 42, 134–149 (2012). https://doi.org/10.1007/s10851-011-0292-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-011-0292-0

Keywords

Navigation