Skip to main content
Log in

Lattice Algebra Approach to Color Image Segmentation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

This manuscript describes a new technique for segmenting color images in different color spaces based on geometrical properties of lattice auto-associative memories. Lattice associative memories are artificial neural networks able to store a finite set X of n-dimensional vectors and recall them when a noisy or incomplete input vector is presented. The canonical lattice auto-associative memories include the min memory W XX and the max memory M XX , both defined as square matrices of size n×n. The column vectors of W XX and M XX , scaled additively by the components of the minimum and maximum vector bounds of X, are used to determine a set of extreme points whose convex hull encloses X. Specifically, since color images form subsets of a finite geometrical space, the scaled column vectors of each memory will correspond to saturated color pixels. Thus, maximal tetrahedrons do exist that enclose proper subsets of pixels in X and such that other color pixels are considered as linear mixtures of extreme points determined from the scaled versions of W XX and M XX . We provide illustrative examples to demonstrate the effectiveness of our method including comparisons with alternative segmentation methods from the literature as well as color separation results in four different color spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballard, D.H., Brown, C.M.: Computer Vision, pp. 149–150. Prentice Hall, Englewood Cliffs (1982)

    Google Scholar 

  2. Haralick, R.M., Shapiro, L.G.: Glossary of computer vision terms. In: Dougherty, E.R. (ed.) Digital Image Processing Methods, p. 439. Dekker, New York (1994)

    Google Scholar 

  3. Jain, R., Kasturi, R., Schunck, B.G.: Machine Vision, pp. 73–76. McGraw-Hill, New York (1995)

    Google Scholar 

  4. Awcock, G.J., Thomas, R.: Applied Image Processing, pp. 126–129. McGraw-Hill, New York (1996)

    Google Scholar 

  5. Pal, N.R., Pal, S.K.: A review on image segmentation techniques. Pattern Recognit. 26(9), 1277–1294 (1993)

    Article  Google Scholar 

  6. Zhu, S.C., Yuille, A.: Region competition: unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 884–900 (1996)

    Article  Google Scholar 

  7. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 22(8), 888–905 (2000)

    Article  Google Scholar 

  8. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  9. Skarbek, W., Koschan, A.: Colour image segmentation: a survey, pp. 1–81. Technical Report 94-32, Technical University of Berlin (1994)

  10. Plataniotis, K.N., Venetsanopoulos, A.N.: Color Image Processing and Applications, pp. 237–273. Springer, Berlin (2000)

    Google Scholar 

  11. Lucchese, L., Mitra, S.K.: Color image segmentation: A-state-of-the-art-survey. Proc. Indian Natl. Sci. Acad. 67(2), 207–221 (2001)

    Google Scholar 

  12. Cheng, H.D., Jain, X.H., Sun, Y., Wang, J.: Color image segmentation: advances and prospects. Pattern Recognit. 34(12), 2259–2281 (2001)

    Article  MATH  Google Scholar 

  13. Celenk, M., Uijt de Haag, M.: Optimal thresholding for color images. In: SPIE Proc., Nonlinear Image Processing IX, San Jose, CA, vol. 3304, pp. 250–259 (1998)

    Google Scholar 

  14. Shafarenko, L., Petrou, H., Kittler, J.: Histogram-based segmentation in a perceptually uniform color space. IEEE Trans. Image Process. 7(9), 1354–1358 (1998)

    Article  Google Scholar 

  15. Meyer, F.: Color image segmentation. In: IEEE Proc., 4th Inter. Conf. on Image Processing and Its Applications, pp. 303–306 (1992)

    Google Scholar 

  16. Crespo, J., Schafer, R.W.: The flat zone approach and color images. In: Serra, J., Soille, P. (eds.) Mathematical Morphology and Its Applications to Image Processing, pp. 85–92. Kluwer Academic, Dordrecht (1994)

    Chapter  Google Scholar 

  17. Liu, J., Yang, Y.-H.: Multiresolution color image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 16(7), 689–700 (1994)

    Article  Google Scholar 

  18. Park, S.H., Yun, I.D., Lee, S.U.: Color image segmentation based on 3-D clustering: morphological approach. Pattern Recognit. 31(8), 1061–1076 (1998)

    Article  Google Scholar 

  19. Géraud, T., Strub, P.-Y., Darbon, J.: Color image segmentation based on automatic morphological clustering. In: IEEE Proc., Inter. Conf. on Image Processing, Thessaloniki, Greece, vol. 3, pp. 70–73 (2001)

    Google Scholar 

  20. Healey, G.E.: Using physical color models in 3-d machine vision. In: SPIE Proc., Perceiving, Measuring and Using Color, San Diego, CA, vol. 1250, pp. 264–275 (1990)

    Google Scholar 

  21. Klinker, G.J., Schafer, S.A., Kanade, T.: A physical approach to color image understanding. Int. J. Comput. Vis. 4(1), 7–38 (1990)

    Article  Google Scholar 

  22. Sowmya, B., Sheelanari, B.: Color image segmentation using soft computing techniques. Int. J. Soft Comput. Appl. 4, 69–80 (2009)

    Google Scholar 

  23. Essaqote, H., Zahid, N., Haddaoui, I., Ettouhami, A.: Color image segmentation based on new clustering algorithm and fuzzy eigenspace. Res. J. Appl. Sci. 2(8), 853–858 (2007)

    Google Scholar 

  24. Palus, H., Kotyczka, T.: Evaluation of colour image segmentation results. In: Colour Image Processing Workshop, Erlangen, Germany (2001)

    Google Scholar 

  25. Gonzalez, R.C., Woods, R.E.: Digital image processing, 3rd edn., pp. 443–446. Pearson Prentice-Hall, Upper Saddle River (2008)

    Google Scholar 

  26. Zhang, C., Wang, P.: A new method for color image segmentation based on intensity and hue clustering. In: IEEE Proc., 15th Inter. Conf. on Pattern Recognition, vol. 3, pp. 613–616 (2000)

    Chapter  Google Scholar 

  27. Palus, H.: Color image segmentation: selected techniques. In: Lukac, R., Plataniotis, K.N. (eds.) Color Image Processing: Methods and Applications, pp. 103–128. CRC Press, Boca Raton (2006)

    Chapter  Google Scholar 

  28. Koschan, A., Abidi, M.: Digital Color Image Processing, pp. 149–174. Wiley, Hoboken (2008)

    Book  Google Scholar 

  29. Maragos, P.: Lattice image processing: a unification of morphological and fuzzy algebraic systems. J. Math. Imaging Vis. 22, 333–353 (2005)

    Article  MathSciNet  Google Scholar 

  30. Kaburlasos, V.G., Ritter, G.X. (eds.): Computational Intelligence Based on Lattice Theory, vol. 67. Springer, Heidelberg (2007)

    MATH  Google Scholar 

  31. Ham, F.M., Kostanic, I.: Principles of Neurocomputing for Science and Engineering. McGraw-Hill, New York (1998)

    Google Scholar 

  32. Lawson, C.L., Hanson, R.J.: Solving Least Squares Problems. Prentice-Hall, Englewood Cliffs (1974), Chap. 23

    MATH  Google Scholar 

  33. Urcid, G., Valdiviezo-N., J.C.: Color image segmentation based on lattice auto-associative memories. In: IASTED Proc., 13th Inter. Conf. on Artificial Intelligence and Soft Computing, Palma de Mallorca, Spain, pp. 166–173 (2009)

    Google Scholar 

  34. Urcid, G., Valdiviezo-N., J.C., Ritter, G.X.: Lattice associative memories for segmenting color images in different color spaces. In: Lecture Notes in Artificial Intelligence, vol. 6077 (Part II), pp. 359–366. Springer, Berlin (2010)

    Google Scholar 

  35. Cuninghame-Green, R.: Minimax, Algebra. Lectures Notes in Economics and Mathematical Systems, vol. 166. Springer, New York (1979)

    MATH  Google Scholar 

  36. Cuninghame-Green, R.: Minimax algebra and applications. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 90, pp. 1–121. Academic Press, New York (1995)

    Google Scholar 

  37. Ritter, G.X., Sussner, P., Diaz de Leon, J.L.: Morphological associative memories. IEEE Trans. Neural Netw. 9(2), 281–293 (1998)

    Article  Google Scholar 

  38. Ritter, G.X., Urcid, G., Iancu, L.: Reconstruction of patterns from noisy inputs using morphological associative memories. J. Math. Imaging Vis. 19(2), 95–111 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  39. Urcid, G., Ritter, G.X.: Kernel computation in morphological associative memories for grayscale image recollection. In: IASTED Proc., 5th Int. Conf. on Signal and Image Processing, Honolulu, HI, pp. 450–455 (2003)

    Google Scholar 

  40. Ritter, G.X., Gader, P.: Fixed points of lattice transforms and lattice associative memories. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 144, pp. 165–242. Elsevier, San Diego (2006)

    Google Scholar 

  41. Urcid, G., Ritter, G.X.: Noise masking for pattern recall using a single lattice matrix associative memory. In: Kaburlasos, V.G., Ritter, G.X. (eds.) Computational Intelligence Based on Lattice Theory, vol. 67, pp. 79–98. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  42. Valle, M.E.: A class of sparsely connected autoassociative morphological memories for large color images. IEEE Trans. Neural Netw. 20(6), 1045–1050 (2009)

    Article  Google Scholar 

  43. Keshava, N.: A survey of spectral unmixing algorithms. Linc. Lab. J. 14(1), 55–78 (2003)

    Google Scholar 

  44. Graña, M., Sussner, P., Ritter, G.X.: Associative morphological memories for endmember determination in spectral unmixing. In: IEEE Proc., Inter. Conf. on Fuzzy Systems, pp. 1285–1290 (2003)

    Google Scholar 

  45. Graña, M., Jiménez, J.L., Hernández, C.: Lattice independence, autoassociative morphological memories and unsupervised segmentation of hyperspectral images. In: Proc. 10th Joint Conf. on Information Sciences, pp. 1624–1631 (2007)

    Chapter  Google Scholar 

  46. Valdiviezo, J.C., Urcid, G.: Hyperspectral endmember detection based on strong lattice independence. In: SPIE Proc., Applications of Digital Image Processing XXX, San Diego, CA, vol. 6696, pp. 1–12 (2007)

    Google Scholar 

  47. Ritter, G.X., Urcid, G., Schmalz, M.S.: Autonomous single-pass endmember approximation using lattice auto-associative memories. Neurocomputing 72(10–12), 2101–2110 (2009)

    Article  Google Scholar 

  48. Graña, M., Villaverde, I., Maldonado, J.O., Hernández, C.: Two lattice computing approaches for the unsupervised segmentation of hyperspectral images. Neurocomputing 72(10–12), 2111–2120 (2009)

    Article  Google Scholar 

  49. Ritter, G.X., Urcid, G.: Lattice algebra approach to endmember determination in hyperspectral imagery. In: Hawkes, P. (ed.) Advances in Imaging and Electron Physics, vol. 160, pp. 113–169. Elsevier, Burlington (2006)

    Google Scholar 

  50. MacQueen, J.: Some methods for classification and analysis of multivariate observations. In: Proc. 5th Berkeley Symposium on Mathematics, Statistics, and Probabilities, vol. I, pp. 281–297. University of California, Berkeley (1967)

    Google Scholar 

  51. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn. Wiley, New York (2000)

    Google Scholar 

  52. Elomaa, T., Koivistoinen, H.: On autonomous K-means clustering. In: Proc. 15th Int. Symposium on Methodologies for Intelligent Systems, pp. 228–236 (2005)

    Google Scholar 

  53. Bezdeck, J.: Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum, New York (1982)

    Google Scholar 

  54. Lim, Y.W., Lee, S.U.: On the color image segmentation algorithm based on the thresholding and fuzzy c-means techniques. Pattern Recognit. 23(9), 935–952 (1990)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gonzalo Urcid.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urcid, G., Valdiviezo-N., JC. & Ritter, G.X. Lattice Algebra Approach to Color Image Segmentation. J Math Imaging Vis 42, 150–162 (2012). https://doi.org/10.1007/s10851-011-0302-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-011-0302-2

Keywords

Navigation