Skip to main content
Log in

Manifold Modeling and Its Application to Tubular Scene Manifold Mosaicing Algorithm

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Manifold mosaicing is arguably the most important class of image mosaicing methods. The existing manifold mosaicing methods work reasonably well only for scenes with simple plane structure and for images taken in a usual way such that the camera’s motion direction is perpendicular to its optical axis. A novel manifold modeling theoretical framework is presented to unify the current image mosaicing methods. Based on this framework, an effective mosaicing algorithm is also proposed to mosaic tubular scenes which have failed most existing methods. We adopt a two-step shaping strategy to parallelize the optical flows and change the topological genus of the image strips by Möbius mappings and circular ring extending. We performed computational experiments via image sequences acquired from tubular scenes and obtained excellent panoramas. The theoretical framework and algorithms in this paper have immediate applications to many practical tubular scene mosaicing problems in medical imaging, industrial inspection, gaming, virtual reality and robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Szeliski, R.: Image mosaicing for tele-reality applications. In: Proceedings of the Second IEEE Workshop on Applications of Computer Vision (WACV 1994), pp. 44–53, Sarasota, FL, USA, 5–7 Dec. (1994)

    Chapter  Google Scholar 

  2. Szeliski, R.: Image alignment and stitching: a tutorial. Found. Trends Comput. Graph. Vis. 2, 1–104 (2006)

    Article  Google Scholar 

  3. Szeliski, R.: Computer Vision: Algorithms and Applications. Texts in Computer Science. Springer, Berlin (2010). Available online: http://szeliski.org/Book/

    Google Scholar 

  4. Faugeras, O.: Three-Dimensional Computer Vision. MIT Press, New York (1993)

    Google Scholar 

  5. Faugeras, O., Luong, Q.T.: The Geometry of Multiple Images. MIT Press, New York (2001)

    MATH  Google Scholar 

  6. Peleg, S., Rousso, B., Rav-Acha, A., Zomet, A.: Mosaicing on adaptive manifolds. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1144–1154 (2000)

    Article  Google Scholar 

  7. Iddan, G., Meron, G., Glukhovsky, A., et al.: Wireless capsule endoscopy. Nature 405, 417 (2000)

    Article  Google Scholar 

  8. Mylonaki, M., Fritscher-Ravens, A., Swain, P.: Wireless capsule endoscopy: a comparison with push enteroscopy in patients with gastroscopy and colonoscopy negative gastrointestinal bleeding. Gut 52(8), 1122–1126 (2003)

    Article  Google Scholar 

  9. Inari, T., Takashima, K., Watanabe, M., Fujimoto, J.: Optical inspection system for the inner surface of a pipe using detection of circular images projected by a laser source. Measurement 13(2), 99–106 (1994)

    Article  Google Scholar 

  10. Shum, H.Y., Szeliski, R.: Systems and experiment paper: Construction of panoramic image mosaics with global and local alignment. Int. J. Comput. Vis. 36(2), 101–130 (2000)

    Article  Google Scholar 

  11. Rousso, B., Peleg, S., Finci, I.: Mosaicing with generalized strips. In: DARPA Image Understanding Workshop, New Orleans, United States, May, pp. 255–260 (1997)

    Google Scholar 

  12. Peleg, S., Herman, J.: Panoramic mosaicing with videobrush. In: DARPA Image Understanding Workshop, New Orleans, United States, May, pp. 261–264 (1997)

    Google Scholar 

  13. Rousso, B., Peleg, S., Finci, I., Rav-Acha, A.: Universal mosaicing using pipe projection. In: International Conference on Computer Vision, pp. 945–952 (1998)

    Google Scholar 

  14. Peleg, S., Rousso, B., Rav-Acha, A., Zomet, A.: Mosaicing with strips on adaptive manifolds. In: Benosman, R., Kang, S.B. (eds.) Panoramic Vision: Sensors, Theory, and Applications, pp. 322–339. Springer, Berlin (2001)

    Google Scholar 

  15. Peleg, S., Rousso, B.: Generalized panoramic mosaic. Patent US7006124, Feb. 28, 2006

  16. Fang, X.Y., Zhang, M.M., Pan, Z.G., Wang, P.: A new method of manifold mosaic for large displacement images. J. Comput. Sci. Technol. 21(2), 218–223 (2006). 13th Pacific Conference on Computer Graphics and Applications, Macao, China, Oct. 12–14, 2005

    Article  Google Scholar 

  17. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found. Trends Comput. Graph. Vis. 3(3), 177–280 (2008)

    Article  Google Scholar 

  18. Bergen, J.R., Anandan, P., Hanna, K.J., et al.: Hierarchical model-based motion estimation. In: Second European Conference on computer Vision (ECCV’92), Santa Margherita Liguere, Italy, pp. 237–252. Springer, Berlin (1992)

    Google Scholar 

  19. Zhang, H.Y., Li, T.T., Geng, Z.: An algorithm for estimating the homography of color images. Int. J. Image Graph. 16(2), 287–292 (2011). In Chinese

    Google Scholar 

  20. Fishler, M.A., Boles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  Google Scholar 

  21. Hartley, R.I., Zisserman, A.: Multiple View Geometry in Computer Vision, 2nd edn. Cambridge University Press, Cambridge (2004). ISBN:0521540518

    Book  MATH  Google Scholar 

  22. Zhang, H.Y., Geng, Z.: Novel interpretation for Levenberg-Marquardt algorithm. Comput. Eng. Appl. 45(19), 5–8 (2009). In Chinese

    MATH  Google Scholar 

  23. Paige, C.C.: Unifying least squares, total least squares and data least squares. In: Total Least Squares and Errors-in-Variables Modeling, pp. 25–34. Kluwer Academic, Amsterdam (2002)

    Google Scholar 

  24. Levin, A., Zomet, A., Peleg, S., Weiss, Y.: Seamless image stitching in the gradient domain. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 377–389. Springer, Berlin (2004)

    Chapter  Google Scholar 

  25. Zomet, A., Levin, A., Peleg, S., Weiss, Y.: Seamless image stitching by minimizing false edges. IEEE Trans. Image Process. 15(4), 969–977 (2006)

    Article  Google Scholar 

  26. Uyttendaele, M., Eden, A., Szeliski, R.: Eliminating ghosting and exposure artifacts in image mosaics. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 509–516 (2001)

    Google Scholar 

  27. Pérez, P., Gangnet, M., Blake, A.: Poisson image editing. In: SIGGRAPH ’03: ACM SIGGRAPH 2003 Papers, pp. 313–318. ACM, New York (2003)

    Chapter  Google Scholar 

  28. Leventhal, D., Gordon, B., Sibley, P.G.: Poisson image editing extended. In: SIGGRAPH ’06: ACM SIGGRAPH 2006 Research Posters, p. 78. ACM, New York (2006)

    Chapter  Google Scholar 

  29. Zomet, A., Feldman, D., Peleg, S.: Mosaicing new views: the crossed-slits projection. IEEE Trans. Pattern Anal. Mach. Intell. 25(6), 741 (2003)

    Article  Google Scholar 

  30. Wexler, Y., Simakov, D.: Space-time scene manifolds. In: Tenth IEEE International Conference on Computer Vision (ICCV’05), vol. 1, pp. 858–863 (2005)

    Chapter  Google Scholar 

  31. Zhang, X., Hua, G., Zhang, L., Shum, H.Y.: Interest seam image. In: 23rd IEEE Conference on Computer Vision and Pattern Recognition (CVPR’2010), June 13–18 (2010). Available online: http://www.cvpapers.com/cvpr2010.html

    Google Scholar 

  32. Agarwala, A., Agrawala, M., Cohen, M., Salesin, D., Szeliski, R.: Photographing long scenes with multi-viewpoint panoramas. ACM Trans. Graph. 25(3), 853–861 (2006)

    Article  Google Scholar 

  33. Olympus: Available online: http://www.olympus-europa.com/endoscopy/2001_5491.htm

  34. Sayaka: Available online: http://www.rfamerica.com/sayaka/index.html

  35. MiroCam: Available online: http://intromedic.com/en/product/productInfo.asp

  36. Seibel, E.J., Dominitz, R.E., Johnston, J.A., et al.: Tethered capsule endoscopy, a low-cost and high-performance alternative technology for the screening of esophageal cancer and Barrett’s esophagus. IEEE Trans. Biomed. Eng. 55(3), 1032–1042 (2008)

    Article  Google Scholar 

  37. Seshamani, S., Smith, M.D., Corso, J.J., Filipovich, M.O., Natarajan, A., Hager, G.D.: Direct global adjustment methods for endoscopic mosaicking. In: Proceedings of SPIE Conference on Medical Imaging (2009)

    Google Scholar 

  38. Armstrong, M.A.: Basic Topology. Undergraduates Texts in Mathematics. Springer, Berlin (1983)

    MATH  Google Scholar 

  39. Thurston, W.: Three-Dimensional Geometry and Topology. Princeton University Press, Princeton (1997)

    MATH  Google Scholar 

  40. Fecko, M.: Differential Geometry and Lie Groups for Physicists. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  41. Chern, S.S., Chen, W.H., Lam, K.S.: Lectures on Differential Geometry. University Mathematics, vol. 1. World Scientific, Singapore (2000)

    Google Scholar 

  42. David Gu, X.F., Yau, S.T.: Computational Conformal Geometry. Advanced Lecture Notes in Mathematics. High Educatio Press/International Press, Beijing (2008)

    Google Scholar 

  43. Bradski, G., Kaebler, A.: Learning OpenCV. O’Reilly Media, Sebastopol (2008)

    Google Scholar 

  44. Burt, P.J., Adelson, E.H.: A multiresolution spline with application to image mosaics. ACM Trans. Graph. 2(4), 217–236 (1983)

    Article  Google Scholar 

  45. Fennema, C.L., Thompson, W.B.: Velocity determination in scenes containing several moving objects. Comput. Graph. Image Process. 9, 301–315 (1979)

    Article  Google Scholar 

  46. Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  47. Andrews, R.J., Lovell, B.C.: Color optical flow. In: Proceedings Workshop on Digital Image Computing, pp. 135–139 (2003)

    Google Scholar 

  48. Jackson, J.D.: Classical Electrodynamics, 3rd edn. Wiley, New York (1999)

    MATH  Google Scholar 

  49. Needham, T.: Visual Complex Analysis. Oxford University Press, London (1997)

    MATH  Google Scholar 

  50. Gonzalez, R.C., Woods, R.E., Eddins, S.L.: Digital Image Processing Using MATLAB, 2nd edn. Gatesmark Publishing (2009)

  51. Xiong, Y.G.: Eliminating ghosting artifacts for panoramic images. In: ISM ’09. 11th IEEE International Symposium on Multimedia, 2009, pp. 432–437 (2009)

    Chapter  Google Scholar 

  52. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  53. Hartley, R.I.: Theory and practice of projective rectification. Int. J. Comput. Vis. 35(2), 115–127 (1999)

    Article  Google Scholar 

  54. Gaikovich, K.P., Dryakhlushin, V.F., et al.: Rectification of near-field images. In: Proceedings of the 2002 4th International Conference on Transparent Optical Networks, vol. 1, pp. 192–195 (2002)

    Google Scholar 

  55. Li, J.P., Chen, H.J., et al.: Rectification and calibration for biomedical image processing. In: Innovative Computing, Information and Control, 2006. First International Conference on ICICIC’06, vol. 3, pp. 564–567 (2006)

    Google Scholar 

  56. Microsoft ICE: Available online: http://research.microsoft.com/en-us/um/redmond/groups/ivm/ICE/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongyan Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, H., Li, T. & Geng, J. Manifold Modeling and Its Application to Tubular Scene Manifold Mosaicing Algorithm. J Math Imaging Vis 44, 80–98 (2012). https://doi.org/10.1007/s10851-011-0312-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-011-0312-0

Keywords

Navigation