Skip to main content
Log in

On the Local Form and Transitions of Pre-symmetry Sets

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Symmetry is an important cue in shape analysis. It has lead to the definition of popular shape descriptors like the medial axis. Its properties have been analyzed with a superset, called the symmetry set which represents the midpoints of circles that are at least bitangent to a shape.

In this work we investigate the pre-symmetry set. This set considers the pairs of points at which the bitangent contact occurs. One thus obtains pairwise symmetric points of a 2D shape. A closed 2D shape has a parameterization P with finite length. Its pre-symmetry can therefore be represented by a symmetric diagram curves formed from the pairs of points (p i ,p j )∈S 1×S 1.

We discuss the properties of the pre-symmetry set visualized by this diagram. We firstly give the so-called transitions, changes caused by a perturbation of the shape and show the changes of the curves in the pre-symmetry set diagram. Secondly, we investigate curves that are spanned by all points on the shape. We name the curves essential loops and discuss their properties and transitions. As one important result we show that their are either zero or two essential loops. In the latter case a part of the medial axis is spanned by an essential loop and can therefore be considered as the main axis of the medial axis.

As application of pre-symmetry sets, we discuss two possibilities for shape matching based on representations of the pre-symmetry set. The first shape descriptor we present is given by a circular diagram representing the shape, with a set of points representing the extrema of the curvature in the order they appear on the shape. They are pairwise connected and endowed with a length measure. This descriptor is directly related to the curves and their lengths in the pre-symmetry set diagram. The second descriptor is given by a binary array representing the areas enclosed by the curves in the pre-symmetry set diagram. It is area based and relates to the geometric derivation of the symmetry set.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 3
Fig. 1
Fig. 2
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Notes

  1. I would like to thank Peter Giblin from Liverpool University for providing this example, see also [40].

  2. http://www.lems.brown.edu/vision/researchAreas/SIID/.

References

  1. Adluru, N., Latecki, L.J.: Contour grouping based on contour-skeleton duality. Int. J. Comput. Vis. 83(1), 12–29 (2009)

    Article  Google Scholar 

  2. Blake, A., Taylor, M.: Planning planar grasps of smooth contours. In: Proceedings IEEE International Conference on Robotics and Automation, vol. 2, pp. 834–839 (1993)

    Google Scholar 

  3. Blake, A., Taylor, M., Cox, A.: Grasping visual symmetry. In: Proceedings Fourth International Conference on Computer Vision, pp. 724–733 (1993)

    Google Scholar 

  4. Blum, H.: Biological shape and visual science (part I). J. Theor. Biol. 38, 205–287 (1973)

    Article  Google Scholar 

  5. Bruce, J.W., Giblin, P.J.: Growth, motion and 1-parameter families of symmetry sets. Proc. R. Soc. Edinb. 104(A), 179–204 (1986)

    Article  MathSciNet  Google Scholar 

  6. Bruce, J.W., Giblin, P.J., Gibson, C.: Symmetry sets. Proc. R. Soc. Edinb. 101(A), 163–186 (1985)

    Article  MathSciNet  Google Scholar 

  7. Cao, F.: Geometric Curve Evolution and Image Processing. Lecture Notes in Mathematics, vol. 1805. Springer, Berlin (2003)

    Book  MATH  Google Scholar 

  8. Dirks, R.M., Bois, J.S., Schaeffer, J.M., Winfree, E., Pierce, N.A.: Thermodynamic analysis of interacting nucleic acid strands. SIAM Rev. 49(1), 65–88 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Giblin, P.J., Brassett, S.A.: Local symmetry of plane curves. Am. Math. Mon. 92(10), 689–707 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  10. Giblin, P.J., Kimia, B.B.: On the intrinsic reconstruction of shape from its symmetries. IEEE Trans. Pattern Anal. Mach. Intell. 25(7), 895–911 (2003)

    Article  Google Scholar 

  11. Giblin, P.J., Kimia, B.B.: On the local form and transitions of symmetry sets, medial axes, and shocks. Int. J. Comput. Vis. 54(1/2), 143–156 (2003)

    Article  MATH  Google Scholar 

  12. Gorelick, L., Galun, M., Sharon, E., Basri, R., Brandt, A.: Shape representation and classification using the Poisson equation. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 1991–2005 (2006)

    Article  Google Scholar 

  13. Havukkala, I., Pang, S., Jain, V., Kasabov, N.: Classifying microRNAs by Gabor filter features from 2D structure bitmap images on a case study of human microRNAs. J. Comput. Theor. Nanosci. 2(4), 506–513 (2005). Special Issue on Computational Intelligence for Bioinformatics

    Article  Google Scholar 

  14. Havukkala, I., Benuskova, L., Pang, P., Jain, V., Kroon, R., Kasabov, N.: Image and fractal information processing for large-scale chemoinformatics, genomics analyses and pattern discovery. In: Lecture Notes in Bioinformatics, vol. 4146, pp. 163–173. Springer, Berlin (2006)

    Google Scholar 

  15. Kimia, B.B.: On the role of medial geometry in human vision. J. Physiol. 97(2–3), 155–190 (2003)

    Google Scholar 

  16. Kimmel, R., Sochen, N., Weickert, J. (eds.): Scale Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459. Springer, Berlin (2005)

    MATH  Google Scholar 

  17. Koenderink, J.J.: Solid Shape. MIT Press, Cambridge (1990)

    Google Scholar 

  18. Kuijper, A., Havukkala, I.: Computationally efficient matching of microRNA shapes using mutual symmetry. In: 9th International Conference on Signal and Image Processing, SIP 2007, August 20–22, 2007, Honolulu, Hawaii, USA, pp. 477–482 (2007)

    Google Scholar 

  19. Kuijper, A., Olsen, O.F.: Transitions of the pre-symmetry set. In: Proceedings of the 17th International Conference on Pattern Recognition, vol. III, pp. 190–193 (2004)

    Chapter  Google Scholar 

  20. Kuijper, A., Olsen, O.F.: Essential loops and their relevance for skeletons and symmetry sets. In: Olsen et al. [30], pp. 24–35 (2005)

    Google Scholar 

  21. Kuijper, A., Olsen, O.F.: The structure of shapes: scale space aspects of the (pre-) symmetry set. In: Kimmel et al. [16], pp. 291–302 (2005)

    Google Scholar 

  22. Kuijper, A., Olsen, O.F.: Describing and matching 2D shapes by their points of mutual symmetry. In: 9th European Conference on Computer Vision, Graz, Austria, May 7–13, 2006, Part III. LNCS, vol. 3953, pp. 213–225 (2006)

    Google Scholar 

  23. Kuijper, A., Olsen, O.F., Giblin, P.J., Bille, Ph., Nielsen, M.: From a 2D shape to a string structure using the symmetry set. In: Proceedings of the 8th European Conference on Computer Vision, vol. II. LNCS, vol. 3022, pp. 313–326 (2004)

    Google Scholar 

  24. Kuijper, A., Olsen, O.F., Giblin, P.J., Bille, Ph.: Matching shapes using the symmetry set. In: International Conference on Pattern Recognition, 20–24 August 2006, Hong Kong, vol. II, pp. 179–182 (2006)

    Google Scholar 

  25. Kuijper, A., Olsen, O.F., Giblin, P.J., Nielsen, M.: Alternative 2D shape representations using the symmetry set. J. Math. Imaging Vis. 26(1/2), 127–147 (2006)

    Article  MathSciNet  Google Scholar 

  26. Mi, X., DeCarlo, D.: Separating parts from 2d shapes using relatability. In: IEEE 11th International Conference on Computer Vision, ICCV 2007, Rio de Janeiro, Brazil, October 14–20, 2007, pp. 1–8 (2007)

    Google Scholar 

  27. Mi, X., DeCarlo, D., Stone, M.: Abstraction of 2d shapes in terms of parts. In: Proceedings of the 7th International Symposium on Non-photorealistic Animation and Rendering (NPAR) 2009, New Orleans, Louisiana, USA, August 1–2, 2009, pp. 15–24 (2009)

    Chapter  Google Scholar 

  28. Mokhtarian, F., Bober, M.Z.: Curvature Scale Space Representation: Theory, Applications, & Mpeg-7 Standardization. Computational Imaging and Vision Series, vol. 25. Kluwer Academic, Dordrecht (2003)

    MATH  Google Scholar 

  29. Ogniewicz, R.L., Kübler, O.: Hierarchic Voronoi skeletons. Pattern Recognit. 28(3), 343–359 (1995)

    Article  Google Scholar 

  30. Olsen, O.F., Florack, L.M.J., Kuijper, A. (eds.): Deep Structure, Singularities, and Computer Vision. Lecture Notes in Computer Science, vol. 3753. Springer, Berlin (2005). ISBN 978-3-540-29836-6

    Google Scholar 

  31. Pelillo, M., Siddiqi, K., Zucker, S.: Matching hierarchical structures using association graphs. IEEE Trans. Pattern Anal. Mach. Intell. 21(11), 1105–1120 (1999)

    Article  Google Scholar 

  32. Polyak, M., Viro, O.: Gauss diagram formulas for Vassiliev invariants. Int. Math. Res. Notes 11, 445–454 (1994)

    Article  MathSciNet  Google Scholar 

  33. Sanniti di Baja, G.: On medial representations. In: Proceedings of 13th Iberoamerican Congress on Pattern Recognition, CIARP 2008. LNCS, vol. 5197, pp. 1–13 (2008)

    Google Scholar 

  34. Sebastian, T.B., Kimia, B.B.: Curves vs. skeletons in object recognition. Signal Process. 85(2), 247–263 (2005)

    Article  MATH  Google Scholar 

  35. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shock graphs. In: Proceedings of the 8th International Conference on Computer Vision, pp. 755–762 (2001)

    Google Scholar 

  36. Sebastian, T.B., Klein, P.N., Kimia, B.B.: Recognition of shapes by editing shock graphs. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 550–571 (2004)

    Article  Google Scholar 

  37. Sharvit, D., Chan, J., Tek, H., Kimia, B.B.: Symmetry-based indexing of image databases. J. Vis. Commun. Image Represent. 9(4), 366–380 (1998)

    Article  Google Scholar 

  38. Siddiqi, K., Kimia, B.B.: A shock grammar for recognition. In: Proceedings CVPR’96, pp. 507–513 (1996)

    Google Scholar 

  39. Siddiqi, K., Pizer, S. (eds.): Medial Representations: Mathematics, Algorithms and Applications. Computational Imaging and Vision Series, vol. 37. Kluwer Academic, Dordrecht (2008)

    MATH  Google Scholar 

  40. Tabachnikov, S.: The (un)equal tangents problem. Am. Math. Mon. 110, 398–405 (2012)

    MathSciNet  Google Scholar 

  41. Trinh, N.H., Kimia, B.B.: Skeleton search: category-specific object recognition and segmentation using a skeletal shape model. Int. J. Comput. Vis. 94(2), 215–240 (2011)

    Article  Google Scholar 

  42. Vassiliev, V.A.: Homology of spaces of knots in any dimensions. Philos. Trans., Math. Phys. Eng. Sci. 359(1784), 1343–1364 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Zhang, D., Lu, G.: Review of shape representation and description techniques. Pattern Recognit. 37(1), 1–19 (2004)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Deep Structure, Singularities, and Computer Vision (DSSCV) project, an IST Programme of the European Union (IST-2001-35443), and carried out by the author while he was at the IT University of Copenhagen, Denmark. Parts of this work were presented at several conferences [19, 20, 22, 24]. I would like to thank my colleagues Peter Giblin at the University of Liverpool, UK, and Ole Fogh Olsen, Mads Nielsen, and Philip Bille at the (IT) University of Copenhagen, Denmark, for the stimulating discussions leading to those publications which formed the starting point for this paper, and the reviewers for suggestions to improve the readability of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arjan Kuijper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuijper, A. On the Local Form and Transitions of Pre-symmetry Sets. J Math Imaging Vis 45, 13–30 (2013). https://doi.org/10.1007/s10851-012-0341-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0341-3

Keywords

Navigation