Skip to main content
Log in

Sparse Representation Shape Models

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

An Erratum to this article was published on 14 December 2013

Abstract

It is well-known that, during shape extraction, enrolling an appropriate shape constraint model could effectively improve locating accuracy. In this paper, a novel deformable shape model, Sparse Representation Shape Models (SRSM), is introduced. Rather than following commonly utilized statistical shape constraints, our model constrains shape appearance based on a morphological structure, the convex hull of aligned training samples, i.e., only shapes that could be linearly represented by aligned training samples with the sum of coefficients equal to one, are defined as qualified. This restriction strictly controls shape deformation modes to reduce extraction errors and prevent extremely poor outputs. This model is realized based on sparse representation, which ensures during shape regularization the maximum valuable shape information could be reserved. Besides, SRSM is interpretable and hence helpful to further understanding applications, such as face pose recognition. The effectiveness of SRSM is verified on two publicly available face image datasets, the FGNET and the FERET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Before processing, each input shape must be aligned with the mean of training samples to unify coordinate system.

References

  1. The FGNET talking face video. http://personalpages.manchester.ac.uk/staff/timothy.f.cootes/data/talking_face/talking_face.html

  2. Alvarez, L., Baumela, L., Henríquez, P., Márquez-Neila, P.: Morphological snakes. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2197–2202 (2010)

    Google Scholar 

  3. Amaldi, E., Kann, V.: On the approximability of minimizing nonzero variables or unsatisfied relations in linear systems. Theor. Comput. Sci. 209(1–2), 237–260 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  4. Belhumeur, P., Hespanha, J., Kriegman, D.: Eigenfaces vs. fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  5. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  6. Candès, E., Eldar, Y., Needell, D., Randall, P.: Compressed sensing with coherent and redundant dictionaries. Appl. Comput. Harmon. Anal. 31(1), 1–21 (2010)

    Google Scholar 

  7. Candès, E., Romberg, J.: L1-magic: recovery of sparse signals via convex programming (2005). http://users.ece.gatech.edu/~justin/l1magic/downloads/l1magic.pdf

  8. Chen, C., Zhao, M., Li, S.Z., Bu, J.: Parameter optimization for active shape models. In: Proceedings of Asian Conference on Computer Vision (2004)

    Google Scholar 

  9. Chin, R.T., Dyer, C.R.: Model-based recognition in robot vision. ACM Comput. Surv. 18(1), 67–108 (1986)

    Article  Google Scholar 

  10. Cootes, T., Taylor, C.: A mixture model for representing shape variation. Image Vis. Comput. 17(8), 567–573 (1999)

    Article  Google Scholar 

  11. Cootes, T., Taylor, C.: Statistical models of appearance for computer vision. Technical report, University of Manchester (2004)

  12. Cootes, T., Taylor, C., Cooper, D., Graham, J.: Training models of shape from sets of examples. In: Proceedings of British Machine Vision Conference, pp. 9–18 (1992)

    Google Scholar 

  13. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  14. Donoho, D.: Neighborly polytopes and sparse solution of underdetermined linear equations. Technical Report, Stanford University (2005)

  15. Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer, Berlin (2010)

    Book  Google Scholar 

  16. Erbou, S., Vester-Christensen, M., Larsen, R., Christensen, L.B., Ersbøll, B.K.: Comparison of sparse point distribution models. Mach. Vis. Appl. 21(6), 999–1008 (2010)

    Article  Google Scholar 

  17. Huang, X., Metaxas, D.: Metamorphs: deformable shape and appearance models. IEEE Trans. Pattern Anal. Mach. Intell. 30(8), 1444–1459 (2007)

    Article  Google Scholar 

  18. Li, Y., Feng, J.: Sparse representation shape model. In: Proceedings of International Conference on Image Processing, pp. 2733–2736

  19. Li, Y., Feng, J.: Frontal face synthesizing according to multiple non-frontal inputs and its application in face recognition. Neurocomputing 91, 77–85 (2012)

    Article  Google Scholar 

  20. Matthews, I., Baker, S.: Active appearance models revisited. Int. J. Comput. Vis. 60, 135–164 (2004)

    Article  Google Scholar 

  21. Milborrow, S., Nicolls, F.: Locating facial features with an extended active shape model. In: Proceedings of European Conference on Computer Vision, pp. 504–513 (2008)

    Google Scholar 

  22. Phillips, P., Moon, H., Rizvi, S., Rauss, P.: The feret evaluation methodology for face recognition algorithms. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1090–1104 (2000)

    Article  Google Scholar 

  23. Phillips, P., Wechsler, H., Huang, J., Rauss, P.: The feret database and evaluation procedure for face recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)

    Article  Google Scholar 

  24. Sjöstrand, K., Stegmann, M.B., Larsen, R.: Sparse principal component analysis in medical shape modeling. In: Proceedings of International Symposium on Medical Imaging (2006)

    Google Scholar 

  25. Sozou, P.D., Cootes, T.F., Taylor, C.J.: A non-linear generalisation of point distribution models using polynomial regression. In: Proceedings of British Machine Vision Conference, pp. 397–406 (1994)

    Google Scholar 

  26. Sukno, F.M., Ordás, S., Butakoff, C., Cruz, S., Frangi, A.F.: Active shape models with invariant optimal features: application to facial analysis. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1105–1117 (2007)

    Article  Google Scholar 

  27. Sundaramoorthi, G., Soatto, S., Yezzi, A.: Curious snakes: a minimum latency solution to the cluttered background problem in active contours. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 2855–2862 (2010)

    Google Scholar 

  28. Szeliski, R.: Computer Vision: Algorithms and Applications. Springer, Berlin (2010)

    Google Scholar 

  29. Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  30. Viola, P., Jones, M.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137–154 (2004)

    Article  Google Scholar 

  31. Wright, J., Yang, A., Ganesh, A., Sastry, S., Ma, Y.: Robust face recognition via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 31(2), 210–227 (2009)

    Article  Google Scholar 

  32. Yang, A., Sastry, S., Ganesh, A., Ma, Y.: Fast l1-minimization algorithms and an application in robust face recognition: a review. In: IEEE International Conference on Image Processing, pp. 1849–1852 (2010)

    Google Scholar 

  33. Zhou, Y., Zhang, W., Tang, X., Shum, H.: A bayesian mixture model for multi-view face alignment. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2, pp. 741–746 (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuelong Li.

Additional information

This work was partially supported by the National Basic Research Program of China (2011CB302400) and the National Natural Science Foundation of China (61173032).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, Y., Feng, J., Meng, L. et al. Sparse Representation Shape Models. J Math Imaging Vis 48, 83–91 (2014). https://doi.org/10.1007/s10851-012-0394-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0394-3

Keywords

Navigation