Skip to main content
Log in

Moving Objects Localization by Local Regions Based Level Set: Application on Urban Traffic

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, a novel method for locating multiple moving objects in a video sequences captured by a stationary camera is proposed. In order to determine the precise location of the objects in an image, a new local regions based level set model is carried out. The whole process consists of two main parts: the global detection and the fine localization. During the global detection, the presence or absence of an object in an image is determined by the Mixture of Gaussians method. For the fine localization, we propose to reformulate global energies by utilizing little squared windows centered on each point over a thin band surrounding the zero level set, hence the object contour can be reshaped into small local interior and exterior regions that lead to compute a family of adaptive local energies, which enables us to well localize the moving objects. Moreover, we propose to adapt the smoothness of the contours, and the accuracy of the objects’ perimeter of different shapes with an automatic stopping criterion. The proposed method has been tested on different real urban traffic videos, and the experiment results demonstrate that our algorithm can locate effectively and accurately the moving objects; optimize the results of the localized objects and also decrease the computations load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

CFL::

Courant-Friedrichs-Lewy

CV::

Chan-Vese

MoG::

Mixture of Gaussians

PC::

Piecewise Constant

PS::

Piecewise Smooth

SDF::

Signed Distance Function

References

  1. Paragios, N., Tziritas, G.: Adaptive detection and localisation of moving objects in image sequences. Signal Process. Image Commun. 14(4), 277–296 (1999)

    Article  Google Scholar 

  2. Sifakis, E., Tziritas, G.: Moving object localisation using a multi-label fast marching algorithm. Signal Process. Image Commun. 16(10), 963–976 (2001)

    Article  Google Scholar 

  3. Jong Ryul, K., Young Shik, M.: Automatic localization and tracking of moving objects using adaptive snake algorithm. In: IEEE Proc., Information, Communications and Signal Processing, pp. 729–733 (2003)

    Google Scholar 

  4. Sifakis, E., Tziritas, G.: Robust object boundary determination using a locally adaptive level set algorithm. In: IEEE Proc., Image Processing, pp. 141–144 (2003)

    Google Scholar 

  5. Agarwal, S., Awan, A., Roth, D.: Learning to detect objects in images via a sparse, part-based representation. IEEE Trans. Pattern Anal. Mach. Intell. 26(11), 1475–1490 (2004)

    Article  Google Scholar 

  6. Frejlichowski, D.: Automatic localization of moving vehicles in image sequences using morphological operations. In: IEEE Proc., Information Technology, pp. 1–4 (2008)

    Google Scholar 

  7. Li, C., Kao, C., Gore, J., Ding, Z.: Implicit active contours driven by local binary fitting energy. In: IEEE Proc., Computer Vision and Pattern Recognition, pp. 1–7 (2007)

    Google Scholar 

  8. Wang, L., Li, C., Sun, Q., Xia, D., Kao, C.: Active contours driven by local and global intensity fitting energy with application to brain MR image segmentation. Comput. Med. Imaging Graph. 33(7), 520–531 (2009)

    Article  Google Scholar 

  9. Zhang, K., Song, H., Zhang, L.: Active contours driven by local image fitting energy. Pattern Recognit. 43(4), 1199–1206 (2010)

    Article  MATH  Google Scholar 

  10. H, C., Wang, Y., Chen, Q.: Active contours driven by weighted region-scalable fitting energy based on local entropy. Signal Process. 92(2), 587–600 (2011)

    Google Scholar 

  11. Tao, W., Tai, X.-C.: Multiple piecewise constant with geodesic active contours (MPC-GAC) framework for interactive image segmentation using graph cut optimization. Image Vis. Comput. 29, 499–508 (2011)

    Article  Google Scholar 

  12. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  13. Yezzi, J.A., Tsai, A., Willsky, A.: A fully global approach to image segmentation via coupled curve evolution equations. J. Vis. Commun. Image Represent. 13(1), 195–216 (2002)

    Article  Google Scholar 

  14. Vese, L., Chan, T.: A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50(3), 271–293 (2002)

    Article  MATH  Google Scholar 

  15. Lankton, S., Nainb, D., Yezzi, A., Tannenbaum, A.: Hybrid geodesic region-based curve evolutions for image segmentation. Proc. SPIE Med. Imaging Symp. 6510(3), 6510–6519 (2007)

    Google Scholar 

  16. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rousson, M., Lenglet, C., Deriche, R.: Level set and region based propagation for diffusion tensor MRI segmentation. Comput. Vis. Math. Methods Med. Biom. Image Anal. 3117(2004), 123–134 (2004)

    Google Scholar 

  18. Stauffer, C., Grimson, W.: Adaptive background mixture models for real time tracking. In: IEEE Proc. Computer Vision and Pattern Recognition, pp. 246–252 (1999)

    Google Scholar 

  19. Cheung, S.-C.S., Kamath, C.: Robust background subtraction with foreground validation for urban traffic video. EURASIP J. Appl. Signal Process. 2005(14), 2330–2340 (2005)

    MATH  Google Scholar 

  20. Al Najjar, M., Ghosh, S., Bayoumi, M.: A hybrid adaptive scheme based on selective Gaussian modeling for real-time object detection. In: IEEE Proc., Circuits and Systems, pp. 936–939 (2009)

    Google Scholar 

  21. He, F., Wang, J., Zhang, X., Gao, Y.: A moving objects detection algorithm using iterative division and Gaussian mixture model. In: IEEE Proc., Advanced Computer Control, pp. 229–233 (2010)

    Google Scholar 

  22. Shi, Y., Cheng, S., Quan, S., Chen, J., Chen, D.: Moving objects detection by Gaussian mixture model: a comparative analysis. In: IEEE Proc., Electrical and Control Engineering, pp. 1121–1124 (2011)

    Google Scholar 

  23. Ardila, J., Bijker, W., Tolpekin, A., Stein, A.: Multitemporal change detection of urban trees using localized region-based active contours in VHR images. Remote Sens. Environ. 124, 413–426 (2012)

    Article  Google Scholar 

  24. Zhang, K., Zhang, L., Song, H., Zhou, W.: Active contours with selective local or global segmentation: a new formulation and level set method. Image Vis. Comput. 28(4), 668–676 (2010)

    Article  Google Scholar 

  25. Dzyubachyk, O., Niessen, W., Meijering, E.: Advanced level-set based multiple-cell segmentation and tracking in time-lapse fluorescence microscopy images. In: IEEE Proc., Biomedical Imaging: From Nano to Macro, pp. 185–188 (2008)

    Google Scholar 

  26. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1998)

    Article  Google Scholar 

  27. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  28. Osher, S.: Fronts propagating with curvature dependent speed algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, G.P., Zhang Sh, Q., Zeng, Q.S.H., Wang, Ch.H.: Boundary-based image segmentation using binary level set method. SPIE Opt. Eng. 46(5) (2007)

  30. Lie, J., Lysaker, M., Tai, X.C.: A binary level set model and some application to Mumford–Shah image segmentation. IEEE Trans. Image Process. 15(5), 1171–1181 (2006)

    Article  MATH  Google Scholar 

  31. Mumford, D., Shah, J.: Boundary detection by minimizing functional. In: IEEE Proc., Computer Vision and Pattern Recognition, pp. 22–26 (1985)

    Google Scholar 

  32. Li, C.M., Xu, C.Y., Gui, C.F., Fox, M.D.: Level set evolution without re-initialization: a new variational formulation. In: IEEE Proc., Computer Vision and Pattern Recognition, pp. 430–436 (2005)

    Google Scholar 

  33. Brox, T., Cremers, D.: On the statistical interpretation of the piecewise smooth Mumford-Shah functional. Scale Space Var. Methods Comput. Vis. 4485(2007), 203–213 (2007)

    Article  MATH  Google Scholar 

  34. Paragios, N., Deriche, R.: Geodesic active contours and level sets for detection and tracking of moving objects. IEEE Trans. Pattern Anal. Mach. Intell. 22(4), 1–15 (2000)

    Article  Google Scholar 

  35. Tsai, A., Yezzi, A., Willsky, A.S.: Curve evolution implementation of the Mumford–Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  36. Vese, L.A., Chan, T.F.: A multiphase level set framework for image segmentation using the Mumford–Shah model. Int. J. Comput. Vis. 50, 271–293 (2002)

    Article  MATH  Google Scholar 

  37. Ronfard, R.: Region-based strategies for active contour models. Int. J. Comput. Vis. 13(2), 229–251 (1994)

    Article  Google Scholar 

  38. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for supervised texture segmentation. In: IEEE Proc., Computer Vision, pp. 926–932 (1999)

    Google Scholar 

  39. Vasilevskiy, A., Siddiqi, K.: Flux-maximizing geometric flows. IEEE Trans. Pattern Anal. Mach. Intell. 24(12), 1565–1578 (2002)

    Article  MATH  Google Scholar 

  40. Adalsteinsson, D., Sethian, J.A.: The fast construction of extension velocities in level set methods. J. Comput. Phys. 148(1), 2–22 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  41. Sussman, M., Smereka, P., Osher, S.: A level set approach for computing solutions to incompressible two phase flow. J. Comput. Phys. 114(1), 146–159 (1994)

    Article  MATH  Google Scholar 

  42. Rosenthal, P., Molchanov, V., Linsen, L.: A narrow band level set method for surface extraction from unstructured point-based volume data. In: WSCG Proc., Computer Graphics, Visualization and Computer Vision, pp. 73–80 (2010)

    Google Scholar 

  43. Moursi, S.G., El-Sakka, M.R.: Active contours initialization for ultrasound Carotid Artery image. In: IEEE, International Conference on Computer Systems and Applications, pp. 629–636 (2008)

    Google Scholar 

  44. http://i21www.ira.uka.de/image_sequences/, Institut für Algorithmen und Kognitive Systeme

  45. ftp://ftp.pets.rdg.ac.uk/pub/PETS2001/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meriem Boumehed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boumehed, M., Alshaqaqi, B., Ouamri, A. et al. Moving Objects Localization by Local Regions Based Level Set: Application on Urban Traffic. J Math Imaging Vis 46, 258–274 (2013). https://doi.org/10.1007/s10851-012-0400-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-012-0400-9

Keywords

Navigation