Skip to main content
Log in

Fast Circular Arc Segmentation Based on Approximate Circularity and Cuboid Graph

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

A fast and efficient algorithm for circular arc segmentation is presented. The algorithm is marked by several novel features including approximate circularity for arc detection, cuboid graph defined by the detected arcs in the 3D parameter space, and resolving all delimited cliques in the cuboid graph to form larger arcs. As circular arcs present in a digitized document often deviate from the ideal conditions of digital circularity, we have loosened their radius intervals and center locations depending on an adaptive tolerance so as to detect the arcs by approximate circularity. The notion of approximate circularity is realized by modifying certain number-theoretic properties of digital circularity, which ensures that the isothetic deviation of each point in an input curve segment from the reported circle does not exceed the specified tolerance. Owing to integer computation and judiciousness of delimited cliques, the algorithm runs significantly fast even for very large images. Exhaustive experimentation with benchmark datasets demonstrate its speed, efficiency, and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Algorithm 2
Procedure
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16a
Fig. 16b
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Notes

  1. run is defined by a stretch of equi-abscissa or equi-ordinate pixels of maximal length. A sequence of pixels defining a circular arc is equivalently and succinctly expressed as a sequence of run-lengths.

  2. The dataset was available in the website mentioned in [23] till 2007.

References

  1. Andres, E., Roussillon, T.: Analytical description of digital circles. In: Debled-Rennesson, I., et al. (eds.) Proc. DGCI’11. LNCS, vol. 6607, pp. 235–246. Springer, Berlin (2011)

    Google Scholar 

  2. Andres, E.: Discrete circles, rings and spheres. Comput. Graph. 18(5), 695–706 (1994)

    Article  Google Scholar 

  3. Asano, T., Klette, R., Ronse, C. (eds.): Geometry, Morphology, and Computational Imaging. LNCS, vol. 2616. Springer, Berlin (2003)

    MATH  Google Scholar 

  4. Barneva, R.P., Brimkov, V.E., Hauptman, H.A., Jorge, R.M.N., Tavares, J.M.R.S. (eds.): Computational Modeling of Objects Represented in Images, 2nd Intl. Symposium (CompIMAGE 2010). LNCS, vol. 6026. Springer, Berlin (2010)

    Google Scholar 

  5. Bera, S., Bhowmick, P., Bhattacharya, B.B.: Detection of circular arcs in a digital image using Chord and Sagitta properties. In: Proc. 8th Intl. Workshop on Graphics Recognition (GREC 2009). LNCS, vol. 6020, pp. 69–80. Springer, Berlin (2010)

    Google Scholar 

  6. Bhowmick, P., Bhattacharya, B.B.: Number-theoretic interpretation and construction of a digital circle. Discrete Appl. Math. 156(12), 2381–2399 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bhowmick, P., Bhattacharya, B.B.: Real polygonal covers of digital discs—some theories and experiments. Fundam. Inform. 91(3–4), 487–505 (2009)

    MATH  MathSciNet  Google Scholar 

  8. Bresenham, J.E.: A linear algorithm for incremental digital display of circular arcs. Commun. ACM 20(2), 100–106 (1977)

    Article  MATH  Google Scholar 

  9. Brimkov, V., Coeurjolly, D., Klette, R.: Digital planarity—a review. Discrete Appl. Math. 155(4), 468–495 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bron, C., Kerbosch, J.: Algorithm 457: finding all cliques of an undirected graph. Commun. ACM 16, 575–577 (1973)

    Article  MATH  Google Scholar 

  11. Cazals, F., Karande, C.: A note on the problem of reporting maximal cliques. Theor. Comput. Sci. 407(1–3), 564–568 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  12. Chattopadhyay, S., Das, P.P., Ghosh-Dastidar, D.: Reconstruction of a digital circle. Pattern Recognit. 27(12), 1663–1676 (1994)

    Article  Google Scholar 

  13. Chen, T.C., Chung, K.L.: An efficient randomized algorithm for detecting circles. Comput. Vis. Image Underst. 83(2), 172–191 (2001)

    Article  MATH  Google Scholar 

  14. Chiu, S.H., Liaw, J.J.: An effective voting method for circle detection. Pattern Recognit. Lett. 26(2), 121–133 (2005)

    Article  Google Scholar 

  15. Coeurjolly, D., Gérard, Y., Reveillès, J.-P., Tougne, L.: An elementary algorithm for digital arc segmentation. Discrete Appl. Math. 139, 31–50 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  16. Damaschke, P.: The linear time recognition of digital arcs. Pattern Recognit. Lett. 16, 543–548 (1995)

    Article  MATH  Google Scholar 

  17. Davies, E.R.: A modified Hough scheme for general circle location. Pattern Recognit. 7(1), 37–43 (1984)

    Article  Google Scholar 

  18. Davies, E.R.: A high speed algorithm for circular object detection. Pattern Recognit. Lett. 6, 323–333 (1987)

    Article  Google Scholar 

  19. Eppstein, D., Strash, D.: Listing all maximal cliques in large sparse real-world graphs. CoRR (2011). arXiv:1103.0318

  20. Fisk, S.: Separating point sets by circles, and the recognition of digital disks. IEEE Trans. Pattern Anal. Mach. Intell. 8, 554–556 (1986)

    Article  Google Scholar 

  21. Foresti, G.L., Regazzoni, C.S., Vernazza, G.: Circular arc extraction by direct clustering in a 3D Hough parameter space. Signal Process. 41, 203–224 (1995)

    Article  MATH  Google Scholar 

  22. Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, Reading (1993)

    Google Scholar 

  23. Seventh IAPR international workshop on Graphics RECognition (GREC 2007). http://www.iupr.org/arcseg2007

  24. Ninth IAPR international workshop on Graphics RECognition (GREC 2011). http://grec2011.cau.ac.kr/ArcSeg.html

  25. de Guevara, I.L., Muñoz, J., de Cózar, O., Blázquez, E.: Robust fitting of circle arcs. J. Math. Imaging Vis. 40, 147–161 (2011)

    Article  MATH  Google Scholar 

  26. Gutin, G.: Independent sets and cliques. In: Gross, J.L., Yellin, J. (eds.) Handbook of Graph Theory (Discrete Mathematics and Its Applications). CRC Press, Boca Raton (2004)

    Google Scholar 

  27. Haralick, R.M.: A measure for circularity of digital figures. IEEE Trans. Syst. Man Cybern. 4, 394–396 (1974)

    Article  MATH  Google Scholar 

  28. Hilaire, X., Tombre, K.: Robust and accurate vectorization of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 28(6), 890–904 (2006)

    Article  Google Scholar 

  29. Ho, C.T., Chen, L.H.: A fast ellipse/circle detector using geometric symmetry. Pattern Recognit. 28(1), 117–124 (1995)

    Article  Google Scholar 

  30. Illingworth, J., Kittler, J.: A survey of the Hough transform. Comput. Vis. Graph. Image Process. 44(1), 87–116 (1988)

    Article  Google Scholar 

  31. Ioannoua, D., Hudab, W., Lainec, A.: Circle recognition through a 2D Hough transform and radius histogramming. Image Vis. Comput. 17, 15–26 (1999)

    Article  Google Scholar 

  32. Kim, H.S., Kim, J.H.: A two-step circle detection algorithm from the intersecting chords. Pattern Recognit. Lett. 22(6–7), 787–798 (2001)

    Article  MATH  Google Scholar 

  33. Kimme, C., Ballard, D., Sklansky, J.: Finding circles by an array of accumulators. Commun. ACM 18(2), 120–122 (1975)

    Article  MATH  Google Scholar 

  34. Klette, R.: Digital geometry—the birth of a new discipline. In: Davis, L.S. (ed.) Foundations of Image Understanding, pp. 33–71. Kluwer, Boston (2001)

    Chapter  Google Scholar 

  35. Klette, R., Žunić, J.: Interactions between number theory and image analysis. In: Latecki, L.J., Mount, D.M., Wu, A.Y. (eds.) Vision Geometry IX. Proc. SPIE, vol. 4117, pp. 210–221. SPIE Press, Belingham (2000)

    Chapter  Google Scholar 

  36. Klette, R., Rosenfeld, A.: Digital Geometry: Geometric Methods for Digital Picture Analysis. Morgan Kaufmann, San Francisco (2004)

    Google Scholar 

  37. Kovalevsky, V.A.: New definition and fast recognition of digital straight segments and arcs. In: Proc. 10th Intl. Conf. Pattern Recognition (ICPR), pp. 31–34. IEEE CS Press, Los Alamitos (1990)

    Google Scholar 

  38. Kulpa, Z., Kruse, B.: Algorithms for circular propagation in discrete images. Comput. Vis. Graph. Image Process. 24(3), 305–328 (1983)

    Article  Google Scholar 

  39. Latecki, L.J., Lakämper, R.: Shape similarity measure based on correspondence of visual parts. IEEE Trans. Pattern Anal. Mach. Intell. 22(10), 1185–1190 (2000)

    Article  Google Scholar 

  40. Leavers, V.: Survey: Which Hough transform? Comput. Vis. Graph. Image Process. 58(2), 250–264 (1993)

    Article  Google Scholar 

  41. Megiddo, N.: Linear time algorithm for linear programming in \({\mathbb{R}}^{3}\) and related problems. SIAM J. Comput. 12, 759–776 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  42. Nakamura, A., Aizawa, K.: Digital circles. Comput. Vis. Graph. Image Process. 26(2), 242–255 (1984)

    Article  Google Scholar 

  43. Nguyen, T.P., Debled-Rennesson, I.: A linear method for segmentation of digital arcs. Rapport de recherche n 0001, Centre de recherche INRIA Nancy (Feb 2010)

  44. Pal, S., Bhowmick, P.: Determining digital circularity using integer intervals. J. Math. Imaging Vis. 42(1), 1–24 (2011)

    Article  MathSciNet  Google Scholar 

  45. Pitteway, M.L.V.: Algorithm for drawing ellipses or hyperbolae with a digital plotter. Comput. J. 10(3), 282–289 (1967)

    Article  Google Scholar 

  46. Ritter, N., Cooper, J.: New resolution independent measures of circularity. J. Math. Imaging Vis. 35(2), 117–127 (2009)

    Article  MathSciNet  Google Scholar 

  47. Rodríguez, M., Abdoulaye, S., Largeteau-Skapin, G., Andres, E.: Generalized perpendicular bisector and circumcenter. In: Computational Modeling of Objects Represented in Images, 2nd Intl. Symposium (CompIMAGE 2010). LNCS, vol. 6026, pp. 1–10. Springer, Berlin (2010)

    Chapter  Google Scholar 

  48. Roussillon, T., Sivignon, I., Tougne, L.: Measure of circularity for parts of digital boundaries and its fast computation. Pattern Recognit. 43(1), 37–46 (2010)

    Article  MATH  Google Scholar 

  49. Sauer, P.: On the recognition of digital circles in linear time. Comput. Geom. 2, 287–302 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  50. Simmons, C., Maguire, D., Phelps, N.: Manual of Engineering Drawing. Technical Product Specification and Documentation to British and International Standards, 3rd edn. Elsevier, Amsterdam (2010)

    Google Scholar 

  51. Song, J.: An object oriented progressive-simplification based vectorization system for engineering drawings: model, algorithm, and performance. IEEE Trans. Pattern Anal. Mach. Intell. 24(8), 890–904 (2002)

    Google Scholar 

  52. Tsai, C.-M., Lee, H.-J.: Binarization of color document images via luminance and saturation color features. IEEE Trans. Image Process. 11(4), 434–451 (2002)

    Article  Google Scholar 

  53. Worring, M., Smeulders, A.W.M.: Digitized circular arcs: characterization and parameter estimation. IEEE Trans. Pattern Anal. Mach. Intell. 17(6), 587–598 (1995)

    Article  Google Scholar 

  54. Xu, L., Oja, E.: Randomized Hough transform (RHT): basic mechanisms, algorithms, and computational complexities. CVGIP, Image Underst. 57(2), 131–154 (1993)

    Article  Google Scholar 

  55. Yip, R., Tam, P., Leung, D.: Modification of Hough transform for circles and ellipses detection using a 2-dimensional array. Pattern Recognit. 25(9), 1007–1022 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

The authors deeply acknowledge the anonymous reviewers for their insightful and thorough review works, which helped enhancing the content and quality of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Partha Bhowmick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhowmick, P., Pal, S. Fast Circular Arc Segmentation Based on Approximate Circularity and Cuboid Graph. J Math Imaging Vis 49, 98–122 (2014). https://doi.org/10.1007/s10851-013-0444-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0444-5

Keywords

Navigation