Skip to main content

Computationally Efficient Formulation of Sparse Color Image Recovery in the JPEG Compressed Domain

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Sparse representations provide a powerful framework for various image processing tasks, among which image recovery seems to be an already classical application. While most developments of image recovery applications are focused on finding the best dictionary, the possibility of using already existing sparse image representations tends to be ignored. This is the case of the JPEG compressed image representation, which is a sparse image representation in terms of the discrete cosine transform (DCT) dictionary. The development of sparse frameworks directly on the JPEG encoded image representation can lead to computationally efficient approaches. Here we introduce a DCT-based JPEG compressed domain formulation of the color image recovery process within a sparse representation framework and we prove mathematically and experimentally not only its numerical efficiency as compared to the pixel level formulation (the processing time is reduced up to 40 %), but also the good quality of the restoration results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Aharon, M., Elad, M., Bruckstein, A.M.: The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representations. IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Article  Google Scholar 

  2. Mairal, J., Elad, M., Sapiro, G.: Sparse representation for color image restoration. IEEE Trans. Image Process. 17(1), 53–69 (2008)

    Article  MathSciNet  Google Scholar 

  3. Smith, B., Rowe, L.A.: A new family of algorithms for manipulating compressed images. IEEE Comput. Graph. Appl. 13(5), 34–42 (1993)

    Article  Google Scholar 

  4. Fang, Y., Chen, Z., Lin, W., Lin, C.W.: Saliency detection in the compressed domain for adaptive image retargeting. IEEE Trans. Image Process. 21(9), 3888–3901 (2012)

    Article  MathSciNet  Google Scholar 

  5. Farinella, G.M., Battiato, S.: Scene classification in compressed and constrained domain. IEEE IET Comput. Vis., Inst. Eng. Tech. 5(5), 320–334 (2011)

    Article  Google Scholar 

  6. Battiato, S., Farinella, G.M., Guarnera, M., Ravi, D., Tomaselli, V.: Instant scene recognition on mobile platform, In: European Conference on Computer Vision (ECCV). Lecture Notes in Computer Science (LNCS), vol. 7585, pp. 655–658, Florence, Italy, 7–13 October (2012)

    Google Scholar 

  7. Wang, X., Wang, H., Huang, Y.: Fast block edge direction analysis in DCT Domain. In: IEEE International Conference on Wireless Communications and Signal Processing, pp. 703–707 (2010)

    Google Scholar 

  8. Kakarala, R., Hebbalaguppe, R.: A method for fusing a pair of images in the JPEG domain. J. Real-Time Image Process. (2011). doi:10.1007/s11554-011-0231-8

    Google Scholar 

  9. Dong, L., Kong, X., Wang, B., You, X.G.: Double compression detection based on Markov model of the first digits of DCT coefficients. In: Proceedings of the 6th International Conference on Image and Graphics, pp. 234–237 (2011)

    Google Scholar 

  10. Huang, F., Huang, J., Shi, Y.Q.: Detecting double JPEG compression with the same quantization matrix. IEEE Trans. Inf. Forensics Secur. 5(4), 848–856 (2010)

    Article  Google Scholar 

  11. Lukas, J., Fridrich, J.: Estimation of primary quantization matrix in double compressed JPEG images. In: Proceedings of Digital Forensic Research Workshop, Cleveland, OH (2003)

    Google Scholar 

  12. Pavlidis, G., Tsekeridou, S., Chamzas, C.: JPEG-matched data filling of sparse images. In: IEEE International Conference on Image Processing (ICIP), Singapore, vol. 1, pp. 493–496 (2004)

    Google Scholar 

  13. Farinella, G.M., Battiato, S.: On the application of structured sparse model selection to JPEG compressed images. In: Proceedings of IAPR 3rd Computational Color Imaging Workshop, Milan, Italy. Lecture Notes in Computer Science, vol. 6626, pp. 137–151 (2011).

    Chapter  Google Scholar 

  14. Guleryuz, O.G.: Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising—Part I: Theory. IEEE Trans. Image Process. 15, 539–554 (2006)

    Article  Google Scholar 

  15. Guleryuz, O.G.: Nonlinear approximation based image recovery using adaptive sparse reconstructions and iterated denoising—Part II: Adaptive algorithms. IEEE Trans. Image Process. 15, 555–571 (2006)

    Article  Google Scholar 

  16. Sapiro, G.: Learning dictionaries and sparse image representation. SIAM J. Imaging Sci. 43(7), 1–2 (2010)

    Google Scholar 

  17. Yu, N., Qiu, T., Ren, F.: Denoising for multiple image copies through joint sparse representation. J. Math. Imaging Vis. (2012). doi:10.1007/s10851-012-0343-1

    Google Scholar 

  18. Mallat, S.G., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41 3397–3415 (1993)

    Article  MATH  Google Scholar 

  19. Rath, G., Guillemot, C.: A complementary matching pursuit algorithm for sparse approximation. In: Proceedings of European Signal Processing Conference, Lausanne, Switzerland (2008)

    Google Scholar 

  20. Cislariu, M., Gordan, M., Vlaicu, A., Florea, C., Suteu, S.C.: Defect detection and restoration of heritage images. Acta Tech. Napoc., Electron.-Telecomun. J. 52(4), 49–54 (2011)

    Google Scholar 

  21. Wright, J., Ma, Y., Mairal, J., Sapiro, G., Huang, T.S., Yan, S.: Sparse representation for computer vision and pattern recognition. In: Proceedings of the IEEE, vol. 98, pp. 1031–1044 (2010)

    Google Scholar 

  22. Wallace, G.K.: The JPEG still picture compression standard. IEEE Trans. Consum. Electron. 38(1), 18–34 (1992)

    Article  Google Scholar 

  23. Wang, Z., Bovik, A., Sheikh, H., Simoncelli, E.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  24. Xu, Z., Wu, H.R., Qiu, B., Yu, X.: Geometric features-based filtering for suppression of impulse noise in color images. IEEE Trans. Image Process. 18(8), 1742–1759 (2009)

    Article  MathSciNet  Google Scholar 

  25. KODAK test images database. (Online) http://r0k.us/graphics/kodak/

  26. Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID2008—a database for evaluation of full-reference visual quality assessment metrics. Adv. Modern Radioelectron. 10, 30–45 (2009)

    Google Scholar 

  27. Criminisi, A., Perez, P., Toyama, K.: Region filling and object removal by exemplar-based image inpainting. IEEE Trans. Image Process. 13(9), 1200–1212 (2004)

    Article  Google Scholar 

  28. Bertalmio, M., Sapiro, G.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, New York, USA, pp. 417–424 (2000)

    Google Scholar 

  29. Chen, T., Wu, H.: Adaptive impulse detection using center-weighted median filter. IEEE Signal Process. Lett. 8(1), 1–3 (2001)

    Article  Google Scholar 

  30. Hore, E.S., Qiu, B., Wu, H.R.: Prediction based image restoration using a multiple window configuration. Opt. Eng. 41, 1855–1865 (2002)

    Article  Google Scholar 

  31. Camacho, J., Morillas, S., Latorre, P.: Efficient impulsive noise suppression based on statistical confidence limits. J. Imaging Sci. Technol. 50(5), 427–436 (2006)

    Article  Google Scholar 

  32. Morillas, S., Gregori, V., Peris-Fajarnés, G., Latorre, P.: A fast impulsive noise color image filter using fuzzy metrics. Real-Time Imaging 11(5–6), 417–428 (2005)

    Article  Google Scholar 

  33. Koschan, A., Abidi, M.: A comparison of median filter techniques for noise removal in color images. In: Proceedings of 7th German Workshop on Color Image Processing, Erlangen, Germany. Report University of Erlangen-Nurnberg, Institute of Computer Science, vol. 34, pp. 69–79 (2001).

    Google Scholar 

  34. Bertalmio, M., Caselles, V., Masnou, S., Sapiro, G.: Inpainting. In: Encyclopedia of Computer Vision. Springer, Berlin (2011). math.univ-lyon1.fr/~masnou/fichiers/publications/survey.pdf

    Google Scholar 

  35. Filipovic, M., Kopriva, I., Cichocki, A.: Inpainting color images in learned dictionary. In: Proceedings of the 20th European Signal Processing Conference (EUSIPCO), 27–31 Aug. 2012, Bucharest, Romania, pp. 66–70 (2012)

    Google Scholar 

Download references

Acknowledgements

This paper was supported by the project “Development and support of multidisciplinary postdoctoral programs in major technical areas of national strategy of Research – Development – Innovation” 4D-POSTDOC, contract no. POSDRU/89/1.5/S/52603, project co-funded by the European Social Fund through Sectoral Operational Program Human Resources Development 2007–2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mihaela Gordan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Florea, C., Gordan, M., Vlaicu, A. et al. Computationally Efficient Formulation of Sparse Color Image Recovery in the JPEG Compressed Domain. J Math Imaging Vis 49, 173–190 (2014). https://doi.org/10.1007/s10851-013-0449-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0449-0

Keywords