Skip to main content
Log in

On Means and Their Asymptotics: Circles and Shape Spaces

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We survey some effects that singular strata may have in the positive curvature context of circles and shape spaces when conducting (semi-)intrinsic statistical analyses. Here, the analysis of data on a stratified space is based on statistical descriptors defined in a possibly different stratified space. E.g. in geodesic principal component analysis for shape spaces, shape data are described by generalized geodesics which naturally form a shape space of their own, different from the original one. In a general context, if the descriptors are obtained as generalized Fréchet means, under rather general circumstances, a strong law of large numbers is valid. If furthermore the descriptors are sufficiently well behaved, a classical central limit theorem can be adopted. One of the crucial conditions is that hitting of singular strata as well as of cut loci, if present, must be controlled. We review the statistical role of the cut locus of intrinsic means for circles as well as that of singular strata for shape spaces (occurring where the group action is degenerate) and conclude with an identification of potential research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afsari, B.: Riemannian L p center of mass: existence, uniqueness, and convexity. Proc. Am. Math. Soc. 139, 655–773 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  2. Barden, D., Le, H., Owen, M.: Central limit theorems for Fréchet means in the space of phylogenetic trees. Electron. J. Probab. 18(25), 1–25 (2013)

    MathSciNet  Google Scholar 

  3. Bhattacharya, R.N., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds I. Ann. Stat. 31(1), 1–29 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bhattacharya, R.N., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds II. Ann. Stat. 33(3), 1225–1259 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  5. Blum, H., Nagel, R.N.: Shape description using weighted symmetric axis features. Pattern Recognit. 10(3), 167–180 (1978)

    Article  MATH  Google Scholar 

  6. Bredon, G.E.: Introduction to Compact Transformation Groups. Pure and Applied Mathematics, vol. 46. Academic Press, New York (1972)

    MATH  Google Scholar 

  7. Charlier, B.: Necessary and sufficient condition for the existence of a fréchet mean on the circle. ESAIM: Probability and Statistics, Accepted Manuscripts August 2013, 14 pp. Published online by Cambridge University Press, 09 August 2012. doi:10.1051/ps/2012015

  8. Choquet, G.: Theory of capacities. Ann. Inst. Fourier 5, 131–295 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cremers, D.: Dynamical statistical shape priors for level set based tracking. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1262–1273 (2006)

    Article  Google Scholar 

  10. Dryden, I.L., Mardia, K.V.: Statistical Shape Analysis. Wiley, Chichester (1998)

    MATH  Google Scholar 

  11. Fletcher, P.T., Lu, C., Pizer, S.M., Joshi, S.C.: Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans. Med. Imaging 23(8), 995–1005 (2004)

    Article  Google Scholar 

  12. Fréchet, M.: Les éléments aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10(4), 215–310 (1948)

    Google Scholar 

  13. Goodall, C.R.: Procrustes methods in the statistical analysis of shape (with discussion). J. R. Stat. Soc. B 53, 285–339 (1991)

    MATH  MathSciNet  Google Scholar 

  14. Gower, J.C.: Generalized Procrustes analysis. Psychometrika 40, 33–51 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  15. Groisser, D.: On the convergence of some Procrustean averaging algorithms. Stoch. Int. J. Probab. Stoch. Process. 77(1), 51–60 (2005)

    Article  MathSciNet  Google Scholar 

  16. Hastie, T., Stuetzle, W.: Principal curves. J. Am. Stat. Assoc. 84(406), 502–516 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hendriks, H., Landsman, Z.: Asymptotic behaviour of sample mean location for manifolds. Stat. Probab. Lett. 26, 169–178 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hotz, T., Huckemann, S.: Intrinsic means on the circle: uniqueness, locus and asymptotics (2011). arXiv:1108.2141

  19. Hotz, T., Huckemann, S., Le, H., Marron, J.S., Mattingly, J., Miller, E., Nolen, J., Owen, M., Patrangenaru, V., Skwerer, S.: Sticky central limit theorems on open books. Ann. Appl. Probab. (2012, accepted)

  20. Huckemann, S.: Inference on 3D Procrustes means: tree boles growth, rank-deficient diffusion tensors and perturbation models. Scand. J. Stat. 38(3), 424–446 (2011)

    MATH  MathSciNet  Google Scholar 

  21. Huckemann, S.: Intrinsic inference on the mean geodesic of planar shapes and tree discrimination by leaf growth. Ann. Stat. 39(2), 1098–1124 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Huckemann, S.: On the meaning of mean shape: manifold stability, locus and the two sample test. Ann. Inst. Math. Stat. 64(6), 1227–1259 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Huckemann, S., Hotz, T., Munk, A.: Intrinsic shape analysis: geodesic principal component analysis for Riemannian manifolds modulo Lie group actions (with discussion). Stat. Sin. 20(1), 1–100 (2010)

    MATH  MathSciNet  Google Scholar 

  24. Jung, S., Dryden, I.L., Marron, J.S.: Analysis of principal nested spheres. Biometrika 99(3), 551–568 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  25. Jung, S., Foskey, M., Marron, J.S.: Principal arc analysis on direct product manifolds. Ann. Appl. Stat. 5, 578–603 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Jupp, P.E.: Residuals for directional data. J. Appl. Stat. 15(2), 137–147 (1988)

    Article  MathSciNet  Google Scholar 

  27. Karcher, H.: Riemannian center of mass and mollifier smoothing. Commun. Pure Appl. Math. XXX, 509–541 (1977)

    Article  MathSciNet  Google Scholar 

  28. Kendall, D.: Foundations of a theory of random sets. In: Stochastic Geometry, Tribute Memory Rollo Davidson, pp. 322–376. Wiley, New York (1974)

    Google Scholar 

  29. Kendall, D.G.: The diffusion of shape. Adv. Appl. Probab. 9, 428–430 (1977)

    Article  Google Scholar 

  30. Kendall, D.G.: Shape manifolds, Procrustean metrics and complex projective spaces. Bull. Lond. Math. Soc. 16(2), 81–121 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  31. Kendall, W.S.: Probability, convexity, and harmonic maps with small image I: uniqueness and fine existence. Proc. Lond. Math. Soc. 61, 371–406 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  32. Kendall, D.G., Barden, D., Carne, T.K., Le, H.: Shape and Shape Theory. Wiley, Chichester (1999)

    Book  MATH  Google Scholar 

  33. Kent, J.T., Mardia, K.V.: A geometric approach to projective shape and the cross ratio. Biometrika 99(4), 833–849 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  34. Klassen, E., Srivastava, A., Mio, W., Joshi, S.: Analysis on planar shapes using geodesic paths on shape spaces. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 372–383 (2004)

    Article  Google Scholar 

  35. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II. Wiley, Chichester (1969)

    MATH  Google Scholar 

  36. Le, H.: Locating Fréchet means with an application to shape spaces. Adv. Appl. Probab. (SGSA) 33(2), 324–338 (2001)

    Article  MATH  Google Scholar 

  37. Mardia, K.V., Jupp, P.E.: Directional Statistics. Wiley, New York (2000)

    MATH  Google Scholar 

  38. Mardia, K., Patrangenaru, V.: On affine and projective shape data analysis. In: Mardia, K.V., Aykroyd, R.G. (eds.) Functional and Spatial Data Analysis, Proceedings of the 20th LASR Workshop, pp. 39–45 (2001)

    Google Scholar 

  39. Mardia, K., Patrangenaru, V.: Directions and projective shapes. Ann. Stat. 33, 1666–1699 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  40. Matheron, G.: In: Random Sets and Integral Geometry. Wiley Series in Probability and Mathematical Statistics. Wiley, New York (1975)

    Google Scholar 

  41. McKilliam, R.G., Quinn, B.G., Clarkson, I.V.L.: Direction estimation by minimum squared arc length. IEEE Trans. Signal Process. 60(5), 2115–2124 (2012)

    Article  MathSciNet  Google Scholar 

  42. Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. J. Eur. Math. Soc. 8, 1–48 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  43. Milnor, J.W.: Morse Theory. Princeton University Press, Princeton (1969). 3rd printing with corrections

    Google Scholar 

  44. Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. Int. J. Comput. Vis. 73(3), 307–324 (2007)

    Article  Google Scholar 

  45. Molchanov, I.: Theory of Random Sets. Probability and Its Applications, vol. xvi. Springer, London (2005)

    MATH  Google Scholar 

  46. O’Neill, B.: The fundamental equations of a submersion. Mich. Math. J. 13(4), 459–469 (1966)

    Article  MATH  MathSciNet  Google Scholar 

  47. Schmidt, F.R., Töppe, E., Cremers, D., Boykov, Y.: Intrinsic mean for semi-metrical shape retrieval via graph cuts. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM-Symposium. Lecture Notes in Computer Science, vol. 4713 pp. 446–455. Springer, Berlin (2007)

    Google Scholar 

  48. Schulz, J., Jung, S., Huckemann, S., Marron, J., Pizer, S.: Analysis of rotational deformations from directional data. Preprint (2012)

  49. Srivastava, A., Klassen, E., Joshi, S., Jermyn, I.: Shape analysis of elastic curves in Euclidean spaces. IEEE Trans. Pattern Anal. Mach. Intell. 33(7), 1415–1428 (2011)

    Article  Google Scholar 

  50. Stachó, L.L.: On curvature measures. Acta Sci. Math. 41, 191–207 (1979)

    MATH  Google Scholar 

  51. Sturm, K.: Probability measures on metric spaces of nonpositive curvature. Contemp. Math. 338, 357–390 (2003)

    Article  MathSciNet  Google Scholar 

  52. van der Vaart, A.: Asymptotic Statistics. Cambridge Univ. Press, Cambridge (2000)

    Google Scholar 

  53. Younes, L.: Shapes and Diffeomorphisms vol. 171. Springer, Berlin (2010)

    MATH  Google Scholar 

  54. Zahn, C., Roskies, R.: Fourier descriptors for plane closed curves. IEEE Trans. Comput. C-21, 269–281 (1972)

    Article  MathSciNet  Google Scholar 

  55. Ziezold, H.: Expected figures and a strong law of large numbers for random elements in quasi-metric spaces. In: Transaction of the 7th Prague Conference on Information Theory, Statistical Decision Function and Random Processes A, pp. 591–602 (1977)

    Google Scholar 

  56. Ziezold, H.: Mean figures and mean shapes applied to biological figure and shape distributions in the plane. Biom. J. 36, 491–510 (1994)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephan Huckemann.

Additional information

S. Huckemann’s work was supported by DFG HU 1575/2-1 and the Niedersachsen Vorab of the Volkswagen Foundation.

T. Hotz’s work was supported by DFG CRC 803.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huckemann, S., Hotz, T. On Means and Their Asymptotics: Circles and Shape Spaces. J Math Imaging Vis 50, 98–106 (2014). https://doi.org/10.1007/s10851-013-0462-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0462-3

Keywords