Skip to main content
Log in

Tree-Oriented Analysis of Brain Artery Structure

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Statistical analysis of magnetic resonance angiography (MRA) brain artery trees is performed using two methods for mapping brain artery trees to points in phylogenetic treespace: cortical landmark correspondence and descendant correspondence. The differences in end-results based on these mappings are highlighted to emphasize the importance of correspondence in tree-oriented data analysis. Representation of brain artery systems as points in phylogenetic treespace, a mathematical space developed in (Billera et al. Adv. Appl. Math 27:733–767, 2001), facilitates this analysis. The phylogenetic treespace is a rich setting for tree-oriented data analysis. The Fréchet sample mean or an approximation is reported. Multidimensional scaling is used to explore structure in the data set based on pairwise distances between data points. This analysis of MRA data shows a statistically significant effect of age and sex on brain artery structure. Variation in the proximity of brain arteries to the cortical surface results in strong statistical difference between sexes and statistically significant age effect. That particular observation is possible with cortical correspondence but did not show up in the descendant correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Asfari, B., Tron, R., Vidal, R.: On the convergence of gradient descent for finding the Riemannian center of mass. SIAM J. Control Optim. Accepted (2013). http://www.cis.jhu.edu/~bijan/

  2. Aydin, B., Pataki, G., Wang, H., Bullitt, E., Marron, J.: A principal component analysis for trees. Ann. Appl. Stat. 3, 1597–1615 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aydin, B., Pataki, G., Wang, H., Ladha, A., Bullitt, E., Marron, J.: Visualizing the structure of large trees. Electron. J. Stat. 5, 405–420 (2009)

    Article  Google Scholar 

  4. Aylward, S., Bullit, E.: Initialization, noise, singularities, and scale in height ridge traversal for tubular object centerline extraction. IEEE Trans. Med. Imaging 21, 61–75 (2002)

    Article  Google Scholar 

  5. Barden, D., Le, H., Owen, M.: Central limit theorems for fréchet means in the space of phylogenetic trees. Electron. J. Probab. (2013)

  6. Bac̆àk, M.: A novel algorithm for computing the Fréchet mean in Hadamard spaces (2012). arXiv:1210.2145v1

  7. Bhattacharya, R., Patrangenaru, V.: Large sample theory of intrinsic and extrinsic sample means on manifolds. Ann. Stat. (2003), 29 pp.

  8. Billera, L., Holmes, S., Vogtmann, K.: Geometry of the space of phylogenetic trees. Adv. Appl. Math. 27, 733–767 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bridson, M., Haefliger, A.: Metric Spaces of Non-positive Curvature. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  10. Bullitt, E., Smith, J., Lin, W.: Designed database of MR brain images of healthy volunteers (2008)

  11. Dryden, I., Mardia, K.: Statistical Shape Analysis. Wiley, New York (1998)

    MATH  Google Scholar 

  12. Felsenstein, J.: Inferring Phylogenies. Sinauer Associates (2004)

  13. Feragen, A., Lo, P., de Bruijne, M., Nielson, M., Lauze, F.: Towards a theory of statistical tree-shape analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20 (2012)

  14. Fréchet, M.: Les élément aléatoires de nature quelconque dans un espace distancié. Ann. Inst. Henri Poincaré 10, 215–310 (1948)

    Google Scholar 

  15. Hillis, D., Heath, T., John, K.S.: Analysis and visualization of tree space. Syst. Biol. 54(3), 471–482 (2005)

    Article  Google Scholar 

  16. Hotz, T., Huckemann, S., Le, H., Marron, J.S., Mattingly, J.C., Miller, E., Nolen, J., Owen, M., Patrangenaru, V., Skwerer, S.: Sticky central limit theorems on open books. arXiv:1202.4267 (2012)

  17. Lee, P., Chang, H., Lin, C., Chiang, A., Ching, Y.: Constructing neuronal structure from 3d confocal microscopic images. J. Med. Biol. Eng. 29, 1–6 (2009)

    Google Scholar 

  18. Miller, E., Owen, M., Provan, J.: Averaging metric phylogenetic trees (2012). arXiv:1211.7046

  19. Nye, T.: Principal components analysis in the space of phylogenetic trees. Ann. Stat. 39, 2243–2794 (2011)

    Article  MathSciNet  Google Scholar 

  20. Oguz, I., Cates, J., Fletcher, T., Whitaker, R., Cool, D., Aylward, S., Styner, M.: Cortical correspondence using entropy-based particle systems and local features. In: Biomedical Imaging: From Nano to Macro, ISBI 2008, 5th IEEE International Symposium on, pp. 1637–1640. IEEE, New York (2008)

    Google Scholar 

  21. Owen, M., Provan, S.: A fast algorithm for computing geodesic distances in tree space. Comput. Biol. Bioinform. 8, 2–13 (2011)

    Article  Google Scholar 

  22. Shen, D., Shen, H., Bhamidi, S., Muñoz, Y.M., Kim, Y., Marron, J.: Functional data analysis of tree data objects. J. Comput. Graph. Stat., accepted (2014)

  23. Sturm, K.: Probability measures on metric spaces of nonpositive curvature. In: Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces. Contemp. Math., vol. 338, pp. 357–390 (2003). Lecture Notes from a quarter program on heat kernels, random walks, and analysis on manifolds and graphs

    Chapter  Google Scholar 

  24. Wang, J.: Geometric Structure of High-Dimensional Data and Dimensionality Reduction. Springer, Berlin (2011)

    Book  Google Scholar 

Download references

Acknowledgements

The MR brain images form healthy volunteers used in this paper were collected and made available by the CASILab at The University of North Carolina at Chapel Hill and were distributed by the MIDAS Data Server at Kitware, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean Skwerer.

Additional information

We are grateful to SAMSI, for sponsoring the authors’ visits to the Research Triangle and for facilitating net meetings, as part of the Analysis of Object Data program in 2010–2011, that helped advance this research. SH acknowledges support from DFG HU 1575/2-1 as well as the Niedersachsen Vorab of the Volkswagen Foundation. IO acknowledges support from UNC Neurodevelopment Disorders Research Center HD 03110. MO acknowledges the support of the Fields Institute VP acknowledges support from NSF grants DMS-0805977 and DMS-1106935.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Skwerer, S., Bullitt, E., Huckemann, S. et al. Tree-Oriented Analysis of Brain Artery Structure. J Math Imaging Vis 50, 126–143 (2014). https://doi.org/10.1007/s10851-013-0473-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0473-0

Keywords

Navigation