Skip to main content
Log in

An Efficient Remote Sensing Image Denoising Method in Extended Discrete Shearlet Domain

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Denoising of images is one of the most basic tasks of image processing. It is a challenging work to design a edge-preserving image denoising scheme. Extended discrete Shearlet transform (extended DST) is an effective multi-scale and multi-direction analysis method, it not only can exactly compute the shearlet coefficients based on a multiresolution analysis, but also can provide nearly optimal approximation for a piecewise smooth function. Based on extended DST, an image denoising using fuzzy support vector machine (FSVM) is proposed. Firstly, the noisy image is decomposed into different subbands of frequency and orientation responses using the extended DST. Secondly, the feature vector for a pixel in a noisy image is formed by the spatial regularity in extended DST domain, and the FSVM model is obtained by training. Then the extended DST detail coefficients are divided into two classes (edge-related coefficients and noise-related ones) by FSVM training model. Finally, the detail subbands of extended DST coefficients are denoised by using the adaptive Bayesian threshold. Extensive experimental results demonstrate that our method can obtain better performances in terms of both subjective and objective evaluations than those state-of-the-art denoising techniques. Especially, the proposed method can preserve edges very well while removing noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Vijaya Arjunan, R., Vijaya Kumar, V.: Survey analysis of various image denoising techniques—a perspective view. In: Proceedings of the International Conference on VLSI, Communication and Instrumentation, Kottayam, India, pp. 704–708 (2011)

    Google Scholar 

  2. Chatterjee, P., Milanfa, P.: Patch-based near-optimal image denoising. IEEE Trans. Image Process. 21(4), 1635–1649 (2012)

    Article  MathSciNet  Google Scholar 

  3. Liu, C., Szeliski, R., Kang, S.B.: Automatic estimation and removal of noise from a single image. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 299–3142 (2008)

    Article  Google Scholar 

  4. Brox, T., Kleinschmidt, O., Cremers, D.: Efficient nonlocal means for denoising of textural patterns. IEEE Trans. Image Process. 17(7), 1057–1092 (2008)

    Article  MathSciNet  Google Scholar 

  5. Buades, A., Coll, B., Morel, J.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 290–530 (2005)

    Article  MathSciNet  Google Scholar 

  6. Pardo, A.: Analysis of non-local image denoising methods. Pattern Recognit. Lett. 32(16), 2145–2149 (2011)

    Article  MathSciNet  Google Scholar 

  7. Van, D.V.D., Kocher, M.: SURE-based non-local means. IEEE Signal Process. Lett. 16(11), 973–976 (2009)

    Article  Google Scholar 

  8. Coupe, P., Manjón, J.V., Robles, M.: Adaptive multiresolution non-local means filter for three-dimensional magnetic resonance image denoising. IET Image Process. 6(5), 558–568 (2012)

    Article  MathSciNet  Google Scholar 

  9. Van, D.V.D., Kocher, M.: Nonlocal means with dimensionality reduction and SURE-based parameter selection. IEEE Trans. Image Process. 20(9), 2683–2690 (2011)

    Article  MathSciNet  Google Scholar 

  10. Rehman, A., Wang, Z.: SSIM-based non-local means image denoising. In: The 18th IEEE International Conference on Image Processing (ICIP), pp. 217–220 (2011)

    Google Scholar 

  11. Salmon, J., Strozecki, Y.: Patch reprojections for non-local methods. Signal Process. 92(2), 477–489 (2012)

    Article  Google Scholar 

  12. Ji, Z., Chena, Q., Suna, Q.-S., et al.: A moment-based nonlocal-means algorithm for image denoising. Inf. Process. Lett. 109(23–24), 1238–1244 (2009)

    Article  MATH  Google Scholar 

  13. Dabov, K., Foi, A., Katkovnik, V., et al.: Image denoising by sparse 3d transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  14. Salmon, J.: On two parameters for denoising with non-local means. IEEE Signal Process. Lett. 17(3), 269–272 (2010)

    Article  MathSciNet  Google Scholar 

  15. Katkovnik, V., Foi, A., Egiazarian, K., Astola, J.: From local kernel to nonlocal multiple-model image denoising. Int. J. Comput. Vis. 86(1), 1–32 (2010)

    Article  MathSciNet  Google Scholar 

  16. Roth, S., Black, M.J.: Steerable random fields. In: The 11th International Conference on Computer Vision (ICCV 2007), pp. 1–8 (2007)

    Google Scholar 

  17. Cao, Y., Luo, Y., Yang, S.: Image denoising based on hierarchical Markov random field. Pattern Recognit. Lett. 32(2), 368–374 (2011)

    Article  Google Scholar 

  18. Chen, S., Liu, M., Zhang, W.: Edge preserving image denoising with a closed form solution. Pattern Recognit. 46(3), 976–988 (2013)

    Article  MATH  Google Scholar 

  19. Gao, Q., Roth, S.: How well do filter-based MRFs model natural images. In: Pattern Recognition, pp. 62–72. Springer, Berlin (2012)

    Chapter  Google Scholar 

  20. Ho, J., Hwang, W.L.: Image denoising using wavelet Bayesian network models. In: 2012 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 1105–1108 (2012)

    Chapter  Google Scholar 

  21. Li, Y.P., Huttenlocher, D.P.: Sparse long-range random field and its application to image denoising. In: Proceedings of European Conference on Computer Vision (ECCV). Lecture Notes in Computer Science, vol. 5304, pp. 344–357 (2008)

    Google Scholar 

  22. Barbu, A.: Learning real-time MRF inference for image denoising. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR 2009), pp. 1574–1581 (2009)

    Chapter  Google Scholar 

  23. Tomasi, C., Manduchi, R.: Bilateral filtering for gray and color images. In: Proceedings of the 1998 IEEE International Conference on Computer Vision, Washington, DC, pp. 839–846 (1998)

    Google Scholar 

  24. Zhang, M., Gunturk, B.K.: Multiresolution bilateral filtering for image denoising. IEEE Trans. Image Process. 17(12), 2324–2333 (2008)

    Article  MathSciNet  Google Scholar 

  25. Liu, G., Ma, W., Ma, Y.: Combination of curvelet threshold with bilateral filtering for image denoising. In: 2012 International Conference on Audio, Language and Image Processing (ICALIP), pp. 469–474 (2012)

    Chapter  Google Scholar 

  26. Yu, H., Zhao, L., Wang, H.: Image denoising using trivariate shrinkage filter in the wavelet domain and joint bilateral filter in the spatial domain. IEEE Trans. Image Process. 18(10), 2364–2369 (2009)

    Article  MathSciNet  Google Scholar 

  27. Lin, C.H., Tsai, J.S., Chiu, C.T.: Switching bilateral filter with a texture/noise detector for universal noise removal. IEEE Trans. Image Process. 19(9), 2307–2320 (2010)

    Article  MathSciNet  Google Scholar 

  28. Zhang, K., Lafruit, G., Lauwereins, R.: Constant time joint bilateral filtering using joint integral histograms. IEEE Trans. Image Process. 21(9), 4309–4314 (2012)

    Article  MathSciNet  Google Scholar 

  29. Tian, C., Krishnan, S.: Accelerated bilateral filtering with block skipping. IEEE Signal Process. Lett. 20(5), 419 (2013)

    Article  Google Scholar 

  30. Hu, J., Li, S.: Fusion of panchromatic and multispectral images using multiscale dual bilateral filter. In: The 18th IEEE International Conference on Image Processing (ICIP), pp. 1489–1492 (2011)

    Google Scholar 

  31. Lefkimmiatis, S., Maragos, P., Papandreou, G.: Bayesian inference on multiscale models for Poisson intensity estimation: applications to photon-limited image denoising. IEEE Trans. Image Process. 18(8), 1724–1741 (2009)

    Article  MathSciNet  Google Scholar 

  32. Fathi, A., Naghsh-Nilchi, A.R.: Efficient image denoising method based on a new adaptive wavelet packet thresholding function. IEEE Trans. Image Process. 21(9), 3981–3990 (2012)

    Article  MathSciNet  Google Scholar 

  33. Rabbani, H., Gazor, S.: Image denoising employing local mixture models in sparse domains. IET Image Process. 4(5), 413–428 (2010)

    Article  Google Scholar 

  34. Yu, G., Sapiro, G., Mallat, S.: Solving inverse problems with piecewise linear estimators: from Gaussian mixture models to structured sparsity. IEEE Trans. Image Process. 21(5), 2481–2499 (2012)

    Article  MathSciNet  Google Scholar 

  35. Yin, S., Cao, L., Ling, Y.: Image denoising with anisotropic bivariate shrinkage. Signal Process. 91(8), 2078–2090 (2011)

    Article  MATH  Google Scholar 

  36. Chen, G., Zhu, W.P., Xie, W.: Wavelet-based image denoising using three scales of dependency. IET Image Process. 6(6), 756–760 (2012)

    Article  MathSciNet  Google Scholar 

  37. Peleg, T., Eldar, Y.C., Elad, M.: Exploiting statistical dependencies in sparse representations for signal recovery. IEEE Trans. Signal Process. 60(5), 2286–2303 (2012)

    Article  MathSciNet  Google Scholar 

  38. Dong, W., Wu, X., Shi, G.: Context-based bias removal of statistical models of wavelet coefficients for image denoising. In: The 16th IEEE International Conference on Image Processing (ICIP), pp. 3841–3844 (2009)

    Google Scholar 

  39. Strang, G.: Introduction to Applied Math. Wellesley-Cambridge Press, Wellesley (1986)

    Google Scholar 

  40. Chen, D., MacLachlan, S., Kilmer, M.: Iterative parameter-choice and multigrid methods for anisotropic diffusion denoising. SIAM J. Sci. Comput. 33(5), 2972–2994 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  41. Liu, F., Liu, J.: Anisotropic diffusion for image denoising based on diffusion tensors. J. Vis. Commun. Image Represent. 23(3), 516–521 (2012)

    Article  Google Scholar 

  42. Tsiotsios, C., Petrou, M.: On the choice of the parameters for anisotropic diffusion in image processing. Pattern Recognit. 46(5), 1369–1381 (2013)

    Article  Google Scholar 

  43. Hajiaboli, M.R.: An anisotropic fourth-order diffusion filter for image noise removal. Int. J. Comput. Vis. 92(2), 177–191 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  44. Qiu, Z., Yang, L., Lu, W.: A new feature-preserving nonlinear anisotropic diffusion for denoising images containing blobs and ridges. Pattern Recognit. Lett. 33(3), 319–330 (2012)

    Article  Google Scholar 

  45. Krissian, K., Aja-Fernández, S.: Noise-driven anisotropic diffusion filtering of MRI. IEEE Trans. Image Process. 18(10), 2265–2274 (2009)

    Article  MathSciNet  Google Scholar 

  46. Li, H.C., Fan, P.Z., Khan, M.K.: Context-adaptive anisotropic diffusion for image denoising. Electron. Lett. 48(14), 827–829 (2012)

    Article  Google Scholar 

  47. Vapnik, V.N.: Statistical Learning Theory. Wiley, New York (1998)

    MATH  Google Scholar 

  48. Wu, D., Peng, D., Tian, J.: Image denoising using local adaptive least squares support vector regression. Geo-Spat. Inf. Sci. 10(3), 196–199 (2007)

    Article  MathSciNet  Google Scholar 

  49. Lin, T.C., Yeh, C.T., Liu, M.K.: Application of SVM-based filter using LMS learning algorithm for image denoising. In: Neural Information Processing, Models and Applications. Lecture Notes in Computer Science, vol. 6444, pp. 82–90 (2010)

    Chapter  Google Scholar 

  50. Zhang, S., Chen, Y.: Image denoising based on wavelet support vector machine. In: 2006 International Conference on Computational Intelligence and Security, pp. 1809–1812 (2006)

    Chapter  Google Scholar 

  51. Lin, T.C.: Decision-based filter based on SVM and evidence theory for image noise removal. Neural Comput. Appl. 21(4), 695–703 (2012)

    Article  Google Scholar 

  52. Li, M., Yang, J., Su, Z.Y.: Support vector regression based color image restoration in YUV color space. J. Shanghai Jiaotong Univ. 15(1), 31–35 (2010)

    Article  Google Scholar 

  53. Zhang, G.D., Yang, X.H., Xu, H.: Image denoising based on support vector machine. In: 2012 Spring Congress on Engineering and Technology (S-CET), pp. 1–4 (2012)

    Chapter  Google Scholar 

  54. Lin, C., Wang, S.: Fuzzy support vector machines. IEEE Trans. Neural Netw. 13(2), 464–471 (2002)

    Article  Google Scholar 

  55. Wang, Y., Wang, S., Lai, K.K.: A new fuzzy support vector machine to evaluate credit risk. IEEE Trans. Fuzzy Syst. 13(6), 820–831 (2005)

    Article  Google Scholar 

  56. Lim, W.Q.: The discrete shearlet transform: a new directional transform and compactly supported shearlet frames. IEEE Trans. Image Process. 19(5), 1166–1180 (2010)

    Article  MathSciNet  Google Scholar 

  57. Firouzmanesh, A., Boulanger, P.: Image de-blurring using shearlets. In: The Ninth Conference on Computer and Robot Vision (CRV), pp. 167–173 (2012)

    Google Scholar 

  58. Balster, E.J., Zheng, Y.F., Ewing, R.L.: Feature-based wavelet shrinkage algorithm for image denoising. IEEE Trans. Image Process. 14(12), 2024–2039 (2005)

    Article  Google Scholar 

  59. Chen, Y., Ji, Z., Hua, C.: Spatial adaptive Bayesian wavelet threshold exploiting scale and space consistency. Multidimens. Syst. Signal Process. 19(1), 157–170 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  60. Elad, M., Aharon, M.: Image denoising via sparse and redundant representations over learned dictionaries. IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. 61272416, 60873222, & 60773031, the Open Project Program of Jiangsu Key Laboratory of Image and Video Understanding for Social Safety (Nanjing University of Science and Technology) under Grant No. 30920130122006, the Open Foundation of Zhejiang Key Laboratory for Signal Processing under Grant No. ZJKL_4_SP-OP2013-01, and Liaoning Research Project for Institutions of Higher Education of China under Grant No. L2013407.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiang-Yang Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, XY., Liu, YC. & Yang, HY. An Efficient Remote Sensing Image Denoising Method in Extended Discrete Shearlet Domain. J Math Imaging Vis 49, 434–453 (2014). https://doi.org/10.1007/s10851-013-0476-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0476-x

Keywords

Navigation