Skip to main content
Log in

Multicriteria Robust Fitting of Elliptical Primitives

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Geometric fitting is present in different fields of science, engineering and astronomy. In particular, ellipse shapes are some of the most commonly employed geometric features in digital image analysis and visual pattern recognition. Most geometric and algebraic methods are sensitive to noise and outlier points and so the results are not usually acceptable. In this paper, a robust geometric multicriteria method based on the mean absolute geometric error and the eccentricity to fit an ellipse to set of points is proposed. It is well known that the least mean absolute error criterion leads to robust estimations.

The experimental results on different real and synthetic data have shown that the proposed algorithm is robust to outliers. Moreover, it allows us to identify outliers and remove them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. Kåsa, I.: A circle fitting procedure and its error analysis. IEEE Trans. Instrum. Meas. 25, 8–14 (1976)

    Article  Google Scholar 

  2. Pratt, V.: Direct least-squares fitting of algebraic surfaces. Comput. Graph. 21, 145–152 (1987)

    Article  MathSciNet  Google Scholar 

  3. Bookstein, F.L.: Fitting conic sections to scattered data. Comput. Graph. Image Process. 9, 56–91 (1979)

    Article  Google Scholar 

  4. Forbes, A.B.: Least-squares best fit geometric elements. In: Mason, J.C., Cox, M.G. (eds.) Algorithms for Approximation II, pp. 311–319. Chapman and Hall, London (1990)

    Chapter  Google Scholar 

  5. Rosin, P.L.: A note on the least squares fitting of ellipses. Pattern Recognit. Lett. 14, 799–808 (1993)

    Article  MATH  Google Scholar 

  6. Butler, B.P., Forbes, A.B., Harris, P.M.: Algorithms for geometric tolerance assessment. NPL Report DITC 228/94 Teddington, UK (1994)

  7. Zwick, D.S.: Applications of orthogonal distance regression in metrology. In: Van Huffel, S. (ed.) Recent Advances in Total Least Squares and Errors-in-Variables Techniques, pp. 265–272. SIAM, Philadelphia (1997)

    Google Scholar 

  8. Nakagawa, Y., Rosenfeld, A.: A note on “Polygonal and elliptical approximation of mechanical parts”. Pattern Recognit. 11, 133–142 (1979)

    Article  Google Scholar 

  9. Foster, N.J., Sanderson, A.C.: Determining object orientation using ellipse fitting. SPlE Proc. Intell. Robots Comput. Vis. 521, 34–43 (1984)

    Article  Google Scholar 

  10. Nagata, T., Tamura, H., Ishibashi, K.: Detection of an ellipse by use of a recursive least-squares estimator. I. Robot. Syst. 2, 163–177 (1985)

    Article  Google Scholar 

  11. Hainesa, C., Goodhill, G.J.: Analyzing neurite outgrowth from explants by fitting ellipses. J. Neurosci. Methods 187, 52–58 (2010)

    Article  Google Scholar 

  12. Lamard, M., Hamitouche-Djabou, C., Develay Morice, J.E., Bressolette, L., Roux, C.: Interactive ellipse fitting in ultrasound images. In: Proceedings of the 25th Annual International Conference of the IEEE EMBS, Cancun, Mexico, September 17–21 (2003)

    Google Scholar 

  13. Mulchronea, K.F., Choudhuryb, K.R.: Fitting an ellipse to an arbitrary shape: implications for strain analysis. J. Struct. Geol. 26, 143–153 (2004)

    Article  Google Scholar 

  14. Wynna, T.J., Stewartb, S.A.: Comparative testing of ellipse-fitting algorithms: implications for analysis of strain and curvature. J. Struct. Geol. 27, 1973–1985 (2005)

    Article  Google Scholar 

  15. Ray, A., Srivastava, D.C.: Non-linear least squares ellipse fitting using the genetic algorithm with applications to strain analysis. J. Struct. Geol. 30, 1593–1602 (2008)

    Article  Google Scholar 

  16. Ramos, P.M., Janeiro, F.M., Tlemçani, M., Cruz Serra, A.: Uncertainty analysis of impedance measurements using DSP implemented ellipse fitting algorithms. In: IEEE International Instrumentation and Measurement Technology Conference, Victoria, Vancouver Island, Canada, May 12–15 (2008)

    Google Scholar 

  17. Gander, W., Golub, G.H., Strebel, R.: Least-square fitting of circles and ellipses. BIT 34, 558–578 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fitzgibbon, A.W., Fisher, R.B.: A Buyer’s guide to conic fitting. In: British Machine Vision Conf., pp. 513–522 (1995)

    Google Scholar 

  19. Pearson, K.: On lines and planes of closest fit to systems of points in space. Philos. Mag. Ser. 6 2(11), 559–572 (1901)

    Article  Google Scholar 

  20. DIN 32880-1: Coordinate Metrology; Geometrical Fundamental Principles, Terms and Definitions, German Standard. Beuth Verlag, Berlin (1986)

    Google Scholar 

  21. Rosin, P.L.: Analysing error of fit functions for ellipses. Graph. Models Image Process. 58(5), 494–502 (1996)

    Article  Google Scholar 

  22. Taubin, G.: Estimation of planar curves, surfaces and nonplanar space curves defined by implicit equations, with applications to edge and range image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 13, 1115–1138 (1991)

    Article  Google Scholar 

  23. Kanatani, K.: Statistical bias of conic fitting and renormalization. IEEE Trans. Pattern Anal. Mach. Intell. 16(3), 320–326 (1994)

    Article  MATH  Google Scholar 

  24. Sampson, P.D.: Fitting conic sections to “very scattered” data: an iterative refinement of the bookstein algorithm. Comput. Graph. Image Process. 18, 97–108 (1982)

    Article  Google Scholar 

  25. Kanatani, K., Rangarajan, P.: Hyper least squares fitting of circles and ellipses. Comput. Stat. Data Anal. 55(6), 2197–2208 (2011)

    Article  MathSciNet  Google Scholar 

  26. Paton, K.: Conic sections in chromosome analysis. Pattern Recognit. 2, 39–51 (1970)

    Article  Google Scholar 

  27. Paton, K.A.: Conic sections in automatic chromosome analysis. Mach. Intell. 5, 411 (1970)

    Google Scholar 

  28. Porrill, J.: Fitting ellipses and predicting confidence envelopes using a bias corrected Kalman filter. Image Vis. Comput. 8, 37–41 (1990)

    Article  Google Scholar 

  29. Ahn, S.J., Rauh, W., Warnecke, H.J.: Least-squares orthogonal distances fitting of circle, sphere, ellipse, hyperbola and parabola. Pattern Recognit. 34, 2283–2303 (2001)

    Article  MATH  Google Scholar 

  30. Kanatani, K.: Statistical optimization for geometric fitting: theoretical accuracy bound and high order error analysis. Int. J. Comput. Vis. 80(2), 167–188 (2008)

    Article  MathSciNet  Google Scholar 

  31. Fitzgibbon, A., Pilu, M., Fisher, R.B.: Direct least square fitting of ellipses. IEEE Trans. Pattern Anal. Mach. Intell. 21(5), 476–480 (1999)

    Article  Google Scholar 

  32. Halíi, R., Flusser, J.: Numerically stable least squares fitting of ellipses. In: Proc. Sixth Int. Conf. in Central Europe on Computer Graphics, Visualization and Interactive Digital Media, vol. 1, pp. 125–132 (1998)

    Google Scholar 

  33. Maini, E.S.: Enhanced direct least squares fitting of ellipses. Int. J. Pattern Recognit. Artif. Intell. 20(6), 939–953 (2006)

    Article  Google Scholar 

  34. Halíi, R.: Robust bias-corrected least squares fitting of ellipses. In: Proc. Eighth Int. Conf. in Central Europe on Computer Graphics, Visualization and Interactive Digital Media, vol. 1 (2000)

    Google Scholar 

  35. Chojnacki, W., Brooks, M.J., van den Hengel, A., Gawley, D.: On the fitting of surfaces to data with covariances. IEEE Trans. Pattern Anal. Mach. Intell. 22(11), 1294–1303 (2000)

    Article  Google Scholar 

  36. Leedan, Y., Meer, P.: Heteroscedastic regression in computer vision: problems with bilinear constraint. Int. J. Comput. Vis. 37(2), 127–150 (2000)

    Article  MATH  Google Scholar 

  37. Matei, J., Meer, P.: Estimation of nonlinear errors-in-variables models for computer vision applications. IEEE Trans. Pattern Anal. Mach. Intell. 28(10), 1537–1553 (2006)

    Article  Google Scholar 

  38. Kanatani, K., Sugaya, Y.: Unified computation of strict maximum likelihood for geometric fitting. J. Math. Imaging Vis. 38(1), 1–13 (2010)

    Article  MathSciNet  Google Scholar 

  39. Calafiore, G.: Approximation of n-dimensional data using spherical and ellipsoidal primitives. IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 32, 269–278 (2002)

    Article  Google Scholar 

  40. de la Fraga, L.G., Vite Silva, I., Cruz-Cortés, N.: Euclidean distance fit of ellipses with a genetic algorithm. In: EvoWorkshops 2007. Lect. Notes Comput. Sci., vol. 4448, pp. 359–366 (2007)

    Google Scholar 

  41. Ray, A., Srivastava, D.C.: Non-linear least squares ellipse fitting using the genetic algorithm with applications to strain analysis. J. Struct. Geol. 30, 1593–1602 (2008)

    Article  Google Scholar 

  42. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. Wiley, New York (1987)

    Book  MATH  Google Scholar 

  43. Roth, G., Levine, M.D.: Extracting geometric primitives. Comput. Vis. Image Underst. 58(1), 1–22 (1993)

    Article  Google Scholar 

  44. Rosin, P.L.: Further five-point fit ellipse fitting. Graph. Models Image Process. 61(5), 245–259 (1999)

    Article  Google Scholar 

  45. Yu, J., Kulkarni, S.R., Poor, H.V.: Robust ellipse and spheroid fitting. Pattern Recognit. Lett. 33, 492–499 (2012)

    Article  Google Scholar 

  46. Meer, P., Mintz, D., Rosenfeld, A., Kim, D.Y.: Robust regression methods for computer vision: a review. Int. J. Comput. Vis. 6, 59–70 (1991)

    Article  Google Scholar 

  47. Huber, P.J.: Robust Statistics. Wiley, New York (1981)

    Book  MATH  Google Scholar 

  48. Trucco, E., Verri, A.: Introductory Techniques for 3-D Computer Vision. Prentice-Hall, Upper Saddle River/New York (1998)

    Google Scholar 

  49. Calafiore, G.C.: Outliers robustness in multivariate orthogonal regression. IEEE Trans. Syst. Man Cybern. 30, 674–679 (2000)

    Article  Google Scholar 

  50. Bolles, R.C., Fischler, M.A.: A RANSAC-based approach to model fitting and its applications to finding cylinders in range data. In: Proc. 7th, IJCAI, pp. 637–643. Springer, Berlin (1981)

    Google Scholar 

  51. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24, 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  52. Rosin, P.L.: Feature fitting. http://users.cs.cf.ac.uk/Paul.Rosin/fitting.html. Accessed 14 November 2013

  53. Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8, 679–698 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Coordinating Editor and the referees for their valuable comments and suggestions. This work is partially supported by Junta de Andalucía (Spain) under contract TIC-6213, project name DERENA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. B. Blázquez-Parra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muñoz-Pérez, J., de Cózar-Macías, O.D., Blázquez-Parra, E.B. et al. Multicriteria Robust Fitting of Elliptical Primitives. J Math Imaging Vis 49, 492–509 (2014). https://doi.org/10.1007/s10851-013-0480-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-013-0480-1

Keywords