Skip to main content
Log in

Exploring the Space of Abstract Textures by Principles and Random Sampling

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Exemplar-based texture synthesis methods try to emulate textures observed in our visual world. Yet the field of all possible textures (natural or not) has been little explored. Indeed, existing abstract synthesis methods focus on a single generation rule and generate a rather limited set of textures. This limitation can be overcome by combining randomly various generation principles and rule parameters. Doing so gives access to a vast and still unexplored set of possible images. In this paper, we introduce an image sampling method combining the main painting techniques of abstract art. This sampler synthesizes what we call multi-layered textures. The underlying image model extends three abstract image synthesis models: the dead leaves model, the spot noise, and fractal generators. By respecting minimal self-similarity rules keeping Gestalt theory grouping principles at each texture layer, the abstract textures remain understandable to human perception. The complexity of the generated textures derives from the systematic and randomized use of shape interaction principles taken from abstract art such as occlusion, transparency, exclusion, inclusion, and tessellation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

Notes

  1. http://matthewjamestaylor.com/blog/create-fractals-with-recursive-drawing

  2. The synthesis framework presented in this paper can be tested online at www.ctim.es/AbstractTextures.

References

  1. Alvarez, L., Gousseau, Y., Morel, J.-M.: The size of objects in natural and artificial images. Adv. Imaging Elect. Phys. 111, 167–242 (1999)

    Article  Google Scholar 

  2. Attneave, F.: Some informational aspects of visual perception. Psychol. Rev. 61(3), 183 (1954)

    Article  Google Scholar 

  3. Barla, P., Breslav, S., Thollot, J., Sillion, F., Markosian, L.: Stroke pattern analysis and synthesis. In: Gröller, E., Szirmay-Kalos, L. (eds.) Computer Graphics Forum, vol. 25, pp. 663–671. Wiley Online Library, New York (2006)

    Google Scholar 

  4. Chiu, S.N., Stoyan, D., Kendall, W.S., Mecke, J.: Stochastic Geometry and Its Applications. Wiley, Chichester (2013)

    Book  MATH  Google Scholar 

  5. Cross, G.R., Jain, A.K.: Markov random field texture models. IEEE Trans. Pattern Anal. Mach. Intell. 1, 25–39 (1983)

    Article  Google Scholar 

  6. Demko, S., Hodges, L., Naylor, B.: Construction of fractal objects with iterated function systems. In: Proceedings of the 12th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’85, pp. 271–278. ACM, New York (1985)

  7. Efros, A.A., Freeman, W.T.: Image quilting for texture synthesis and transfer. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 341–346. ACM, New York (2001)

  8. Efros, A.A., Leung, T.K.: Texture synthesis by non-parametric sampling. In: The Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, vol. 2, pp. 1033–1038. IEEE, New York (1999)

  9. Ellis, W.D.: A Source Book of Gestalt Psychology, vol. 2. Psychology Press, East Sussex (1967)

    Google Scholar 

  10. Fang, H., Hart, J.C.: Textureshop: texture synthesis as a photograph editing tool. ACM Trans. Graph. 23(3), 354–359 (2004)

    Article  Google Scholar 

  11. Galerne, B., Gousseau, Y.: The transparent dead leaves model. Adv. Appl. Probab. 44(1), 1–20 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  12. Galerne, B., Gousseau, Y., Morel, J.-M.: Micro-texture Synthesis by Phase Randomization. Image Process. (2011). doi:10.5201/ipol.2011.ggm_rpn

    MATH  Google Scholar 

  13. Galerne, B., Gousseau, Y., Morel, J.-M.: Random phase textures: theory and synthesis. IEEE Trans. Image Process. 20(1), 257–267 (2011)

    Article  MathSciNet  Google Scholar 

  14. Galerne, B., Lagae, A., Lefebvre, S., Drettakis, G.: Gabor noise by example. ACM Trans. Graph. (TOG) 31(4), 73 (2012)

    Article  Google Scholar 

  15. Haase, F., Klein, M., Tarnowsky, A., Wolter, F.-E.: Interactive fractal compositions. In: Proceedings of the 11th ACM SIGGRAPH International Conference on Virtual-Reality Continuum and Its Applications in Industry. VRCAI ’12, pp. 181–188. ACM, New York (2012)

  16. Haeberli, P.: Paint by numbers: abstract image representations. In: ACM SIGGRAPH Computer Graphics, vol. 24, pp. 207–214. ACM, New York (1990)

  17. Heeger, D.J., Bergen, J.R.: Pyramid-based texture analysis/synthesis. In: Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’95, pp. 229–238. ACM, New York (1995)

  18. Hurtut, T., Landes, P.-E., Thollot, J., Gousseau, Y., Drouillhet, R., Coeurjolly, J.-F.: Appearance-guided synthesis of element arrangements by example. In: Proceedings of the 7th International Symposium on Non-photorealistic Animation and Rendering, pp. 51–60. ACM, New York (2009)

  19. Julesz, B.: Textons, the elements of texture perception, and their interactions. Nature 290, 91–97 (1981)

    Article  Google Scholar 

  20. Kandinsky, W.: Concerning the Spiritual in Art. Dover, New York (1910)

    Google Scholar 

  21. Kanizsa, G.: Organization in Vision: Essays on Gestalt Perception. Praeger, New York (1979)

    Google Scholar 

  22. Kim, J., Pellacini, F.: Jigsaw image mosaics. In: Proceedings of the 29th Annual Conference on Computer Graphics and Interactive Techniques. SIGGRAPH ’02, pp. 657–664. ACM, New York (2002)

  23. Kim, T., Sewall, J., Sud, A., Lin, M.C.: A fast fractal growth algorithm. In: ACM SIGGRAPH 2005 Sketches, SIGGRAPH ’05. ACM, New York (2005)

  24. Klee, P.: Pedagogical Sketchbook. Praeger, New York (1960)

    Google Scholar 

  25. Kwatra, V., Schödl, A., Essa, I., Turk, G., Bobick, A.: Graphcut textures: image and video synthesis using graph cuts. In: ACM SIGGRAPH 2003 Papers. SIGGRAPH ’03, pp. 277–286. ACM, New York (2003)

  26. Lagae, A., Lefebvre, S., Cook, R., DeRose, T., Drettakis, G., Ebert, D.S., Lewis, J.P., Perlin, K., Zwicker, M.: A survey of procedural noise functions. Comput. Graph. Forum 29, 2579–2600 (2010)

    Article  Google Scholar 

  27. Lee, A.B., Mumford, D., Huang, J.: Occlusion models for natural images: a statistical study of a scale-invariant dead leaves model. Int. J. Comput. Vis. 41(1–2), 35–59 (2001)

    Article  MATH  Google Scholar 

  28. Lee, A.B., Pedersen, K.S., Mumford, D.: The nonlinear statistics of high-contrast patches in natural images. Int. J. Comput. Vis. 54(1–3), 83–103 (2003)

    Article  MATH  Google Scholar 

  29. Lin, S., Ritchie, D., Fisher, M., Hanrahan, P.: Probabilistic color-by-numbers: suggesting pattern colorizations using factor graphs. ACM Trans. Graph. 32(4), 37:1–37:12 (2013)

    Google Scholar 

  30. Lisani, J.-L., Buades, A., Morel, J.-M.: Image color cube dimensional filtering and visualization. Image Process. (2011). doi:10.5201/ipol.2011.blm-cdf

    Google Scholar 

  31. Ma, C., Wei, L.-Y., Tong, X.: Discrete element textures. In: ACM SIGGRAPH 2011 Papers, SIGGRAPH ’11, pp. 62:1–62:10. ACM, New York (2011)

  32. Maeda, J.: Linear Way. Fondation Cartier pour lart contemporain, Paris (2005)

    Google Scholar 

  33. Maeda, J.: The Laws of Simplicity. MIT Press, Cambridge (2006)

    Google Scholar 

  34. Maharik, R., Bessmeltsev, M., Sheffer, A., Shamir, A., Carr, N.: Digital micrography. In: ACM SIGGRAPH 2011 Papers, SIGGRAPH ’11, pp. 100:1–100:12. ACM, New York (2011)

  35. Matheron, G.: Modèle séquentiel de partition aléatoire. rapport technique, p. 102 (1968)

  36. Metzger, W.: Gesetze des Sehens (die Lehre vom Sehen der Formen und Dinge des Raumes und der Bewegung). Kramer, Frankfurt (1975)

    Google Scholar 

  37. Parry, M., Spencer, D.E.: Geometric formulation of classical color harmony. JOSA 34(1), 46–50 (1944)

    Article  Google Scholar 

  38. Noll, A.M.: Computers and the visual arts. Des. Q. 66(67), 64–71 (1966)

    Google Scholar 

  39. Noll, A.M.: Human or machine: a subjective comparison of Piet Mondrian’s “Composition With Lines” (1917) and a computer-generated picture. Psychol. Rec. 16, 1–16 (1966)

    Google Scholar 

  40. Perlin, K.: An image synthesizer. SIGGRAPH Comput. Graph. 19(3), 287–296 (1985)

    Article  Google Scholar 

  41. Portilla, J., Simoncelli, E.P.: A parametric texture model based on joint statistics of complex wavelet coefficients. Int. J. Comput. Vis. 40(1), 49–70 (2000)

    Article  MATH  Google Scholar 

  42. Rosin, P.L., Collomosse, J.: Image and Video-Based Artistic Stylisation, vol. 42. Springer, New York (2013)

    Book  Google Scholar 

  43. Ruimin, L.V., Sun, S., Zhang, K.: Fractal strokes. In: SIGGRAPH Asia 2011 Sketches, SA ’11, pp. 33:1–33:2. ACM, New York (2011)

  44. Song, Y.-Z., Rosin, P.L., Hall, P.M., Collomosse, J.: Arty shapes. In: Proceedings of the Fourth Eurographics Conference on Computational Aesthetics in Graphics, Visualization and Imaging, pp. 65–72. Eurographics Association (2008)

  45. Van, W., Jarke J.: Spot noise texture synthesis for data visualization. In: ACM SIGGRAPH Computer Graphics, vol. 25, pp. 309–318. ACM, New York (1991)

  46. Wei, L.-Y., Lefebvre, S., Kwatra, V., Turk, G., et al.: State of the art in example-based texture synthesis. In: Eurographics 2009, State of the Art Report, EG-STAR, pp. 93–117 (2009)

  47. Wertheimer, M.: Untersuchungen zur Lehre von der Gestalt. II. Psychol. Res. 4(1), 301–350 (1923)

    Article  Google Scholar 

  48. Wertheimer, M.: Gestalt Theory. Hayes Barton Press, London (1938)

    Book  Google Scholar 

  49. Wu, T., Polatkan, G., Steel, D., Brown, W., Daubechies, I., Calderbank, A.R.: Painting analysis using wavelets and probabilistic topic models. In: ICIP, pp. 3264–3268. IEEE, New York (2013)

  50. Zhang, K., Yu, J.: Generating abstract paintings in kandinsky style. In: SIGGRAPH Asia 2013 Art Gallery, p. 18. ACM, New York (2013)

Download references

Acknowledgments

Work partially supported by ERC advanced Grant Twelve Labours, and ONR Grant N00014-97-1-0839 (J.-M.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Alvarez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, L., Gousseau, Y., Morel, JM. et al. Exploring the Space of Abstract Textures by Principles and Random Sampling. J Math Imaging Vis 53, 332–345 (2015). https://doi.org/10.1007/s10851-015-0582-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0582-z

Keywords

Navigation