Skip to main content
Log in

SURE-Type Functionals as Criteria for Parametric PSF Estimation

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Point spread function (PSF) estimation plays an important role in blind image deconvolution. This paper proposes two novel criteria for parametric PSF estimation, based on Stein’s unbiased risk estimate (SURE), namely, prediction-SURE and its variant. We theoretically prove the SURE-type functionals incorporating exact (complementary) smoother filtering as the valid criteria for PSF estimation. We also provide the theoretical error analysis for the regularizer approximations, by which we show that the proposed frequency-adaptive regularization term yields more accurate PSF estimate than others. In particular, the proposed SURE-variant enables us to avoid estimation of noise variance, which is a key advantage over the traditional SURE-like functional. Finally, we propose an efficient algorithm for the minimizations of the criteria. Not limited to the examples we show in this paper, the proposed SURE-based framework has a great potential for other imaging applications, provided the parametric PSF form is available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Notes

  1. The last term \(\Vert \mathbf {x}\Vert ^2\) of (3) is a constant irrelevant to the optimization of function \(\mathbf {f}\).

  2. Oracle means that this criterion is not accessible in practice, due to the unknown \(\mathbf {x}\) in (4).

  3. Oracle means that this criterion is not accessible in practice, due to the unknown \(\mathbf {H}_0\mathbf {x}\) in (7).

  4. Following the convention of [14], we refer to estimation of \(\mathbf {x}\) as estimation, and to estimation of \(\mu =\mathbf {H}_0\mathbf {x}\) as prediction.

  5. The optimal solution \(\mathbf {s}^\star \) may not be unique. The uniqueness of the solution depends on the parametric form of PSF.

  6. The practical computation can be fully performed in Fourier domain. The introduction of matrix \(\mathbf {Q}\) is for sake of concise expression by linear algebra language.

  7. The last term \(\sigma ^2\), though unknown, is a constant irrelevant to the minimization procedure.

  8. The terminology jinc is due to the structural similarity to sinc function [6].

  9. BSNR (blurr signal-to-noise ratio) is defined as \({\text {BSNR}}=10\log _{10} \Big (\frac{\Vert \mathbf {H}_0\mathbf {x}-{\text {mean}}(\mathbf {H}_0\mathbf {x})\Vert ^2}{N\sigma ^2}\Big )\) [24, 34].

References

  1. Allen, D.M.: Mean square error of prediction as a criterion for selecting variables. Technometrics 13(3), 469–475 (1971)

    Article  MATH  Google Scholar 

  2. Babacan, S., Molina, R., Katsaggelos, A.: Variational Bayesian blind deconvolution using a total variation prior. IEEE Trans. Image Process. 18(1), 12–26 (2009)

    Article  MathSciNet  Google Scholar 

  3. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bishop, T., Babacan, S., Amizic, B., Katsaggelos, A., Chan, T., Molina, R.: Blind image deconvolution: problem formulation and existing approaches. In: Blind image deconvolution: theory and applications, pp. 1–23. CRC Press (2007)

  5. Born, M., Wolf, E., Bhatia, A.: Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  6. Cao, Q.: Generalized Jinc functions and their application to focusing and diffraction of circular apertures. J. Opt. Soc. Am. A 20(4), 661–667 (2003)

    Article  Google Scholar 

  7. Carasso, A.: Linear and nonlinear image deblurring: a documented study. SIAM J. Numer. Anal. 36, 1659–1689 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carasso, A.: The APEX method in image sharpening and the use of low exponent Lévy stable laws. SIAM J. Appl. Math. 63, 593–618 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  9. Chan, T., Wong, C.: Total variation blind deconvolution. IEEE Trans. Image Process. 7(3), 370–375 (1998)

    Article  Google Scholar 

  10. Chen, F., Ma, J.: An empirical identification method of Gaussian blur parameter for image deblurring. IEEE Trans. Signal Process. 57(7), 2467–2478 (2009)

    Article  MathSciNet  Google Scholar 

  11. Danielyan, A., Katkovnik, V., Egiazarian, K.: BM3D frames and variational image deblurring. IEEE Trans. Image Process. 21(4), 1715–1728 (2012)

    Article  MathSciNet  Google Scholar 

  12. Donoho, D., Johnstone, J.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  13. Eldar, Y.: Generalized SURE for exponential families: applications to regularization. IEEE Trans. Signal Process. 57(2), 471–481 (2009)

    Article  MathSciNet  Google Scholar 

  14. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning, vol. 2. Springer, New York (2009)

    Book  MATH  Google Scholar 

  15. Kundur, D., Hatzinakos, D.: Blind image deconvolution. IEEE Signal Process. Mag. 13(3), 43–64 (1996)

    Article  Google Scholar 

  16. Liao, H., Ng, M.K.: Blind deconvolution using generalized cross-validation approach to regularization parameter estimation. IEEE Trans. Image Process. 20(3), 3005–3019 (2011)

    MathSciNet  Google Scholar 

  17. Li, D., Simske, S.: Atmospheric turbulence degraded-image restoration by kurtosis minimization. IEEE Geosci. Remote Sens. Lett. 6(2), 244–247 (2009)

    Article  Google Scholar 

  18. Luisier, F.: The SURE-LET approach to image denoising. Ph.D. Thesis, École Polytechnique Fédérale de Lausanne (2010)

  19. Michailovich, O., Tannenbaum, A.: Blind deconvolution of medical ultrasound images: a parametric inverse filtering approach. IEEE Trans. Image Process. 16(12), 3005–3019 (2007)

    Article  MathSciNet  Google Scholar 

  20. Moffat, A.: A theoretical investigation of focal stellar images in the photographic emulsion and application to photographic photometry. Astron. Astrophys. 3, 455–461 (1969)

    Google Scholar 

  21. Molina, R., Núñez, J., Cortijo, F., Mateos, J.: Image restoration in astronomy: a Bayesian perspective. IEEE Signal Process. Mag. 18(2), 11–29 (2001)

    Article  Google Scholar 

  22. Molina, R., Mateos, J., Katsaggelos, A.: Blind deconvolution using a variational approach to parameter, image, and blur estimation. IEEE Trans. Image Process. 15(12), 3715–3727 (2006)

    Article  MathSciNet  Google Scholar 

  23. Oliveira, J., Figueiredo, M., Bioucas-Dias, J.: Parametric blur estimation for blind restoration of natural images: linear motion and out-of-focus. IEEE Trans. Image Process. 23(1), 466–477 (2014)

    Article  MathSciNet  Google Scholar 

  24. Pan, H., Blu, T.: An iterative linear expansion of thresholds for \(\ell _1\)-based image restoration. IEEE Trans. Image Process. 22(9), 3715–3728 (2013)

    Article  Google Scholar 

  25. Pesquet, J., Benazza-Benyahia, A., Chaux, C.: A SURE approach for digital signal/image deconvolution problems. IEEE Trans. Signal Process. 57(12), 4616–4632 (2009)

    Article  MathSciNet  Google Scholar 

  26. Poropat, G.: Effect of system point spread function, apparent size, and detector instantaneous field of view on the infrared image contrast of small objects. Opt. Eng. 32(10), 2598–2607 (1993)

    Article  Google Scholar 

  27. Reeves, S.J., Mersereau, R.M.: Blur identification by the method of generalized cross-validation. IEEE Trans. Image Process. 1(3), 301–311 (1992)

    Article  Google Scholar 

  28. Sarder, P., Nehorai, A.: Deconvolution methods for 3-D fluorescence microscopy images. IEEE Signal Process. Mag. 23(3), 32–45 (2006)

    Article  Google Scholar 

  29. Stein, C.: Estimation of the mean of a multivariate normal distribution. Ann. Stat. 9(6), 1135–1151 (1981)

    Article  MATH  Google Scholar 

  30. Vaiter, S., Deledalle, C., Peyré, G., Fadili, J., Dossal, C.: Local behavior of sparse analysis regularization: applications to risk estimation. Appl. Comput. Harmon. Anal. 35(3), 433–451 (2012)

    Article  Google Scholar 

  31. Vonesch, C., Ramani, S., Unser, M.: Recursive risk estimation for non-linear image deconvolution with a wavelet-domain sparsity constraint. In: 15th IEEE International Conference on Image Processing, pp. 665–668 (2008)

  32. Xue, F., Blu, T.: SURE-based blind Gaussian deconvolution. In: 2012 IEEE Statistical Signal Processing Workshop (SSP), pp. 452–455. Ann Arbor, MI, USA, Aug 2012

  33. Xue, F., Blu, T.: SURE-based motion estimation. In: 2012 IEEE International Conference on Signal Processing, Communications and Computing, pp. 373–377. Hong Kong, Aug 2012

  34. Xue, F., Blu, T.: A novel SURE-based criterion for parametric PSF estimation. IEEE Trans. Image Process. 24(2), 595–607 (2015)

    Article  MathSciNet  Google Scholar 

  35. Xue, F., Yagola, A.G.: Analysis of point-target detection performance based on ATF and TSF. Infrared Phys. Technol. 52(5), 166–173 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (No. 61401013). The authors would like to thank the coordinating editor and anonymous reviewers for their insightful comments, and also obliged to Hanjie PAN for many useful discussions on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Xue.

Appendices

Appendix 1: Proof of Theorem 3

Proof

Based on Lemma 1, the prediction-SURE can be written as

$$\begin{aligned} \epsilon =\frac{1}{N} \big \Vert \mathbf {U}\mathbf {y}-\mathbf {y}\big \Vert ^2 +\frac{2\sigma ^2}{N} {\mathrm {div}}_{\mathbf {y}}\big (\mathbf {U}\mathbf {y}\big ) -\sigma ^2. \end{aligned}$$

We omit the subscript \(\mathbf {U}_{\mathbf {H},\lambda }\) as \(\mathbf {U}\) for brevity in this proof.

Now, we are going to compute the divergence term—\({\mathrm {div}}_{\mathbf {y}}\big (\mathbf {U}\mathbf {y}\big )\). Notice that the matrix \(\mathbf {U}\) is the function of \(\mathbf {y}\), hence, \({\mathrm {div}}_{\mathbf {y}}\big (\mathbf {U}\mathbf {y}\big )\ne {\mathrm {Tr}}(\mathbf {U})\).

First, by definition of divergence term, we have

$$\begin{aligned} {\mathrm {div}}_{\mathbf {y}}\big (\mathbf {U}\mathbf {y}\big ) ={\mathrm {Tr}}(\mathbf {U})+\bigg ( \underbrace{\frac{\partial \mathrm {diag}(\mathbf {U})}{\partial \mathbf {y}}}_{\alpha }\bigg )^\mathrm {T}\mathbf {y}, \end{aligned}$$
(28)

where the vector \(\mathrm {diag}(\mathbf {U})\in \mathbf {R}^N\) consists of the diagonal element \(U_{n,n}\) of matrix \(\mathbf {U}\):

$$\begin{aligned} \frac{\partial \mathrm {diag}(\mathbf {U})}{\partial \mathbf {y}} =\left[ \frac{\mathrm {d}U_{1,1}(\mathbf {y})}{\mathrm {d}y(0)}, \frac{\mathrm {d}U_{2,2}(\mathbf {y})}{\mathrm {d}y(1)}, \ldots , \frac{\mathrm {d}U_{N,N}(\mathbf {y})}{\mathrm {d}y(N-1)}\right] ^\mathrm {T}\end{aligned}$$

Notice that under periodic boundary condition, \(\mathbf {U}\) is circulant matrix, whose diagonal element is a constant given by

$$\begin{aligned}&U_{n,n}(\mathbf {y})=\underbrace{u_N(0)}_\text {filter}\\&\quad =\frac{1}{N}\sum _{k=0}^{N-1} \underbrace{\frac{|H(k)|^2}{|H(k)|^2 +\frac{\lambda }{|Y(k)|^2}}}_{U(k)},\qquad \mathrm {for}\ n=0,1,...,N-1. \end{aligned}$$

The second equality is from inverse Fourier transform. Now, we consider the n-th element of \(\alpha \):

$$\begin{aligned}&\alpha _n=\frac{\partial U_{n,n}(\mathbf {y})}{\partial y(n)} =\frac{\partial U_{n,n}(\mathbf {y})}{\partial |Y(k)|^2} \cdot \frac{\partial |Y(k)|^2}{\partial y(n)} \\&\quad =\frac{1}{N}\sum _{k=0}^{N-1} \frac{\partial \frac{|H(k)|^2}{|H(k)|^2 +\frac{\lambda }{|Y(k)|^2}}}{\partial |Y(k)|^2} \cdot \frac{\partial |Y(k)|^2}{\partial y(n)}, \end{aligned}$$

where

$$\begin{aligned} \frac{\partial \displaystyle \bigg (\frac{|H(k)|^2}{|H(k)|^2 +\frac{\lambda }{|Y(k)|^2}}\bigg )}{\partial |Y(k)|^2} =\frac{|H(k)|^2\lambda }{\Big (|H(k)|^2 +\frac{\lambda }{|Y(k)|^2}\Big )^2\cdot |Y(k)|^4} \end{aligned}$$

and for any fixed n:

$$\begin{aligned}&\frac{\partial |Y(k)|^2}{\partial y(n)}= \frac{\partial \displaystyle \bigg |\sum _{l=0}^{N-1}y(l) e^{-j\frac{2\pi kl}{N}}\bigg |^2}{\partial y(n)}\\&\quad = \frac{\partial \displaystyle \Bigg ( \bigg |\sum _{l=0}^{N-1}y(l)\cos \frac{2\pi kl}{N}\bigg |^2 + \bigg |\sum _{l=0}^{N-1}y(l)\sin \frac{2\pi kl}{N}\bigg |^2 \Bigg )}{\partial y(n)}, \end{aligned}$$

where the two terms are

$$\begin{aligned}&\frac{\partial \displaystyle \bigg (\sum _{l=0}^{N-1}y(l)\cos \frac{2\pi kl}{N}\bigg )^2}{\partial y(n)}\\&\quad =2\cos \frac{2\pi nk}{N}\bigg ( \sum _{l=0}^{N-1}y(l)\cos \frac{2\pi lk}{N}\bigg ) \\&\quad =2\cos \frac{2\pi nk}{N}{\mathcal {R}}\{Y(k)\} \end{aligned}$$

and

$$\begin{aligned}&\frac{\partial \displaystyle \bigg (\sum _{l=0}^{N-1}y(l)\sin \frac{2\pi kl}{N}\bigg )^2}{\partial y(n)}\\&=2\sin \frac{2\pi nk}{N}\bigg ( \sum _{l=0}^{N-1}y(l)\sin \frac{2\pi lk}{N}\bigg ) \\&=-2\sin \frac{2\pi nk}{N}{\mathcal {I}}\{Y(k)\} \end{aligned}$$

Hence, \(\alpha _n\) becomes

$$\begin{aligned} \alpha _n= & {} \frac{2}{N}\sum _{k=0}^{N-1} \underbrace{\frac{|H(k)|^2\lambda }{\Big (|H(k)|^2 +\frac{\lambda }{|Y(k)|^2}\Big )^2\cdot |Y(k)|^4}} _{V(k): \text {real-valued}}\\&\quad \cdot \bigg ({\mathcal {R}}\big \{Y(k)\big \}\cos \frac{2\pi nk}{N} \\&-{\mathcal {I}}\big \{Y(k)\big \}\sin \frac{2\pi nk}{N}\bigg )\\= & {} \frac{2}{N}\sum _{k=0}^{N-1} {\mathcal {R}}\big \{\underbrace{V(k)Y(k)}_{G(k)}\big \} \cos \frac{2\pi nk}{N} \\&-\frac{2}{N}\sum _{k=0}^{N-1} {\mathcal {I}}\big \{\underbrace{V(k)Y(k)}_{G(k)}\big \} \sin \frac{2\pi nk}{N}\\= & {} 2{\mathcal {R}}\{g(n)\}, \end{aligned}$$

where g(n) is the inverse Fourier transform of \(G(k)=V(k)Y(k)\): \(g(n)=\frac{1}{N}\sum _{k=0}^{N-1} G(k)e^{j\frac{2\pi nk}{N}}\). Since V(k) is real-valued, and Y(k) is Hermitian symmetric, g(n) is real-valued. Thus, we have \(\alpha _n=2{\mathcal {R}}\{g(n)\}=2g(n)\).

Finally, the second term of (28) becomes

$$\begin{aligned} \alpha ^\mathrm {T}\mathbf {y}=2(\mathbf {F}G)^\mathrm {T}\mathbf {F}Y =2G^\mathrm {T}\mathbf {F}^\mathrm {T}\mathbf {F}Y=2G^\mathrm {T}Y\\ =\sum _{k=0}^{N-1}V(k)Y^*(k)Y(k) =\sum _{k=0}^{N-1}V(k)|Y(k)|^2\\ =\sum _{k=0}^{N-1}\underbrace{ \frac{|H(k)|^2\lambda }{\Big (|H(k)|^2 +\frac{\lambda }{|Y(k)|^2}\Big )^2\cdot |Y(k)|^2}}_{Q(k)}, \end{aligned}$$

where \(\mathbf {F}\) is 1-D DFT matrix. The proof is completed. \(\square \)

Appendix 2: Proof of Corollary 1

Proof

The proof is very similar to that of Theorem 3 (see Appendix 1). The only difference from one-dimensional case is how to compute \(\frac{\partial |Y(k_1,k_2)|^2}{\partial y(n_1,n_2)}\):

$$\begin{aligned} \frac{\partial |Y(k_1,k_2)|^2}{\partial y(n_1,n_2)}= \frac{\partial \displaystyle \Bigg |\sum _{l_1=0}^{M-1}\sum _{l_2=0}^{N-1} y(l_1,l_2)e^{-j\frac{2\pi k_1l_1}{M}} e^{-j\frac{2\pi k_2l_2}{N}}\Bigg |^2}{\partial y(n_1,n_2)}. \end{aligned}$$

The numerator is

$$\begin{aligned}&\Bigg |\sum _{l_1=0}^{M-1}\sum _{l_2=0}^{N-1} y(l_1,l_2)e^{-j\frac{2\pi k_1l_1}{M}} e^{-j\frac{2\pi k_2l_2}{N}}\Bigg |^2 \nonumber \\&=\Bigg [\sum _{l_1=0}^{M-1}\sum _{l_2=0}^{N-1} y(l_1,l_2)\Big (\underbrace{\cos \frac{2\pi k_1l_1}{M} \cos \frac{2\pi k_2l_2}{N} -\sin \frac{2\pi k_1l_1}{M} \sin \frac{2\pi k_2l_2}{N}}_{A(l_1,l_2)}\Big )\Bigg ]^2 \nonumber \\&\quad +\Bigg [\sum _{l_1=0}^{M-1}\sum _{l_2=0}^{N-1} y(l_1,l_2)\Big (\underbrace{\cos \frac{2\pi k_1l_1}{M} \sin \frac{2\pi k_2l_2}{N} +\sin \frac{2\pi k_1l_1}{M} \cos \frac{2\pi k_2l_2}{N}}_{B(l_1,l_2)}\Big )\Bigg ]^2.\nonumber \\ \end{aligned}$$
(29)

The derivatives of both the terms of (29) are

$$\begin{aligned}&\frac{\partial \displaystyle \bigg [\sum _{l_1=0}^{M-1}\sum _{l_2=0}^{N-1} y(l_1,l_2)A(l_1,l_2)\bigg ]^2}{\partial y(n_1,n_2)} \\&\quad =2\bigg ( \underbrace{\sum _{l_1=0}^{M-1}\sum _{l_2=0}^{N-1} y(l_1,l_2)A(l_1,l_2)}_{{\mathcal {R}}\{Y(k_1,k_2)\}}\bigg )\\&\qquad \times \Big ( \underbrace{\cos \frac{2\pi k_1n_1}{M} \cos \frac{2\pi k_2n_2}{N} -\sin \frac{2\pi k_1n_1}{M} \sin \frac{2\pi k_2n_2}{N}}_{A(n_1,n_2)}\Big ) \end{aligned}$$

and

$$\begin{aligned}&\frac{\partial \displaystyle \bigg [\sum _{l_1=0}^{M-1}\sum _{l_2=0}^{N-1} y(l_1,l_2)B(l_1,l_2)\bigg ]^2}{\partial y(n_1,n_2)} \\&\quad =2\bigg ( \underbrace{ \sum _{l_1=0}^{M-1}\sum _{l_2=0}^{N-1} y(l_1,l_2)B(l_1,l_2)}_{-{\mathcal {I}}\{Y(k_1,k_2)\}}\bigg )\\&\qquad \times \Big ( \underbrace{\cos \frac{2\pi k_1n_1}{M} \sin \frac{2\pi k_2n_2}{N} +\sin \frac{2\pi k_1n_1}{M} \cos \frac{2\pi k_2n_2}{N}}_{B(n_1,n_2)}\Big ). \end{aligned}$$

Hence, \(\alpha _{n_1,n_2}\) is

$$\begin{aligned} \alpha _{n_1,n_2}= & {} \frac{2}{MN}\sum _{k_1=0}^{M-1}\sum _{k_2=0}^{N-1} \underbrace{ \frac{|H(k_1,k_2)|^2\lambda }{\Big (|H(k_1,k_2)|^2 +\frac{\lambda }{|Y(k_1,k_2)|^2}\Big )^2 \cdot |Y(k_1,k_2)|^4} }_{V(k_1,k_2): \text {real-valued}}\\&\cdot \Big ({\mathcal {R}}\{Y(k_1,k_2)\}A(n_1,n_2) -{\mathcal {I}}\{Y(k_1,k_2)\}B(n_1,n_2)\Big )\\= & {} \frac{2}{MN}\sum _{k_1=0}^{M-1}\sum _{k_2=0}^{N-1} {\mathcal {R}}\big \{\underbrace{V(k_1,k_2)Y(k_1,k_2)} _{G(k_1,k_2)}\big \}A(n_1,n_2)\\&-\frac{2}{MN}\sum _{k_1=0}^{M-1}\sum _{k_2=0}^{N-1} {\mathcal {I}}\big \{\underbrace{V(k_1,k_2)Y(k_1,k_2)} _{G(k_1,k_2)}\big \}B(n_1,n_2)\\= & {} 2{\mathcal {R}}\big \{g(n_1,n_2)\big \}, \end{aligned}$$

where \(g(n_1,n_2)\) is the inverse Fourier transform of \(G(k_1,k_2)=V(k_1,k_2)Y(k_1,k_2)\): \(g(n_1,n_2)=\frac{1}{MN}\sum _{k_1=0}^{M-1}\sum _{k_2=0}^{N-1} G(k_1,k_2)e^{j\frac{2\pi n_1k_1}{M}} e^{j\frac{2\pi n_2k_2}{N}}\). Since \(V(k_1,k_2)\) is real-valued, and \(Y(k_1,k_2)\) is Hermitian symmetric, \(g(n_1,n_2)\) is real-valued. Thus, we have \(\alpha _{n_1,n_2}=2{\mathcal {R}}\{g(n_1,n_2)\} =2g(n_1,n_2)\).

Finally, the second term of (28) becomes

$$\begin{aligned} \alpha ^\mathrm {T}\mathbf {y}&=2(\mathbf {F}G)^\mathrm {T}\mathbf {F}Y =2G^\mathrm {T}\mathbf {F}^\mathrm {T}\mathbf {F}Y=2G^\mathrm {T}Y\\&=\sum _{k_1=0}^{M-1}\sum _{k_2=0}^{N-1} V(k_1,k_2)Y^*(k_1,k_2)Y(k_1,k_2)\\&=\sum _{k_1=0}^{M-1}\sum _{k_2=0}^{N-1} V(k_1,k_2)|Y(k_1,k_2)|^2\\&=\sum _{k_1=0}^{M-1}\sum _{k_2=0}^{N-1} \underbrace{ \frac{|H(k_1,k_2)|^2\lambda }{\Big (|H(k_1,k_2)|^2 +\frac{\lambda }{|Y(k_1,k_2)|^2}\Big )^2 \cdot |Y(k_1,k_2)|^2}}_{Q(k_1,k_2)}, \end{aligned}$$

where \(\mathbf {F}\) is 2-D DFT matrix. The proof is completed. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, F., Liu, J., Jiao, S. et al. SURE-Type Functionals as Criteria for Parametric PSF Estimation. J Math Imaging Vis 54, 78–105 (2016). https://doi.org/10.1007/s10851-015-0590-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0590-z

Keywords

Navigation