Skip to main content

The Symmetric Generalized LIP Model and Its Application in Dynamic Range Enhancement

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

The theory and applications of the logarithmic image processing (LIP) have been studied by many researchers. In this work, we develop a symmetric generalized LIP (SGLIP) model. The development is based on a comparative study of recent theoretical development which include the original LIP model, the generalized LIP model (GLIP), the symmetric LIP (SLIP) model, and the log-ratio model. The study is conducted under the framework of a generalized linear system which is formally defined in this paper from a vector space perspective. Using the main idea of the log-ratio model, we review an alternative link between the LIP and the SLIP model. This leads naturally to the combination of the idea of the SLIP model with the GLIP model to develop the SGLIP model. We demonstrate that (1) the SLIP model is a special case of the SGLIP model; (2) the SGLIP model has desirable properties overcoming problems associated with the LIP model and GLIP model; and (3) the SGLIP model provides new insights into the generating function and the gray tone function which are essential concepts in the LIP model. We also demonstrate an application of the SGLIP model in enhancing the dynamic range of images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The LCC algorithm is run remotely from the web site: http://www.ipol.im/pub/art/2011/gl_lcc/

  2. The source code is kindly provided by the authors.

References

  1. Oppenheim, A.V., Schafer, R.W., Stockham Jr, T.G.: Nonlinear filtering of multiplied and convolved signals. Proc. IEEE 56(8), 1264–1291 (1969)

    Article  Google Scholar 

  2. Stockham Jr, T.G.: Image processing in the context of a visual models. Proc. IEEE 60(7), 828–842 (1972)

    Article  Google Scholar 

  3. Pitas, I., Venetsanopoulos, A.: Nonlinear mean filters in image processing. IEEE Trans. Acoust. Speech Signal Process. 34(3), 573–584 (1986)

    Article  Google Scholar 

  4. Shvaytser, H., Peleg, S.: Inversion of picture operators. Pattern Recogn. Lett. 5(1), 49–61 (1987)

    Article  Google Scholar 

  5. Jourlin, M., Pinoli, J.C.: A model for logarithmic image processing. J. Microsc. 149, 21–35 (1988)

    Article  Google Scholar 

  6. Jourlin, M., Pinoli, J.C.: Image dynamic range enhancement and stabilization in the context of the logarithmic image processing model. Signal Process. 41, 225–237 (1995)

    Article  MATH  Google Scholar 

  7. Pinoli, J.C.: A general comparative study of the multiplicative homomorphic, log-ratio and logarithmic image processing approaches. Signal Process. 58(1), 11–45 (1997)

    Article  MATH  Google Scholar 

  8. Pinoli, J.C.: The logarithmic image processing model: connections with human brightness perception and contrast estimators. J. Math. Imaging Vis. 7(4), 341–358 (1997)

    Article  Google Scholar 

  9. Deng, G., Pinoli, J.C.: Differentiation-based edge detection using the logarithmic image processing model. J. Math. Imaging Vis. 8(2), 161–180 (1998)

    Article  MathSciNet  Google Scholar 

  10. Courbebaisse, G., Trunde, F., Jourlin, M.: Wavelet transform and lip model. Image Anal. Stereol. 21, 121–125 (2002)

    Article  Google Scholar 

  11. Lievin, M., Luthon, F.: Nonlinear color space and spatiotemporal MRF for hierarchical segmentation of face features in video. IEEE Trans. Image Process. 13(1), 63–71 (2004)

    Article  Google Scholar 

  12. Palomares, J.M., Gonzalez, J., Vidal, E.R., Prieto, A.: General logarithmic image processing convolution. IEEE Trans. Image Process. 15(11), 3602–3608 (2006)

    Article  Google Scholar 

  13. Pinoli, J.C., Debayle, J.: Logarithmic adaptive neighborhood image processing (LANIP): introduction, connections to human brightness perception, and application issues. EURASIP J. Adv. Signal Process. 1, 114 (2007). doi:10.1155/2007/36105

    MATH  Google Scholar 

  14. Panetta, K., Wharton, E., Agaian, S.: Human visual system-based image enhancement and logarithmic contrast measure. IEEE Trans. Syst. Man Cybern. B 38(1), 174–188 (2008)

    Article  Google Scholar 

  15. Panetta, K., Wharton, E.J., Agaian, S.S.: Logarithmic edge detection with applications. J. Comput. 3, 11–19 (2008)

    Article  Google Scholar 

  16. Gouinaud, H., Gavet, Y., Debayle, J., Pinoli, J.C.: Color correction in the framework of color logarithmic image processing. In: 2011 7th International Symposium on Image and Signal Processing and Analysis (ISPA), pp. 129–133 (2011)

  17. Jourlin, M., Breugnot, J., Itthirad, F., Bouabdellah, M., Close, B.: Logarithmic image processing for color images. In: Hawkes, P.W. (ed.) Advances in Imaging and Electron Physics, vol. 168, pp. 65–107. Elsevier, Amsterdam (2011)

    Google Scholar 

  18. Pinoli, J.C., Debayle, J.: Adaptive generalized metrics, distance maps and nearest neighbor transforms on gray tone images. Pattern Recognit. 45(7), 2758–2768 (2012)

    Article  MATH  Google Scholar 

  19. Jourlin, M., Couka, E., Abdallah, B., Corvo, J., Breugnot, J.: Asplünd’s metric defined in the logarithmic image processing (LIP) framework: a new way to perform double-sided image probing for non-linear grayscale pattern matching. Pattern Recognit. 47(9), 2908–2924 (2014)

    Article  Google Scholar 

  20. Deng, G.: An entropy interpretation of the logarithmic image processing model with application to contrast enhancement. IEEE Trans. Image Process. 18(5), 1135–1140 (2009)

    Article  MathSciNet  Google Scholar 

  21. Sbaiz, L., Feng, Y., Charbon, E., Susstrunk, S., Vetterli, M.: The gigavision camera. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1093–1096 (2009)

  22. Deng, G.: A generalized logarithmic image processing model based on the giga-vision sensor model. IEEE Trans. Image Process. 3, 1406–1414 (2012)

    Article  Google Scholar 

  23. Nercessian, S.C., Panetta, K., Agaian, S.S.: Multiresolution decomposition schemes using the parameterized logarithmic image processing model with application to image fusion. EURASIP J. Adv. Signal Process. 2011, 1 (2011). doi:10.1155/2011/515084

    Article  Google Scholar 

  24. Patrascu, V.: Fuzzy enhancement method using logarithmic models. In: IEEE International Conference on Fuzzy Systems, FUZZ-IEEE 2004, Budapest, Hungary, July 25–29, 2004, pp. 1431–1436 (2004)

  25. Vertan, C., Oprea, A., Florea, C., Florea, L.: A pseudo-logarithmic image processing framework for edge detection. In: Advanced Concepts for Intelligent Vision Systems. LNCS, vol. 5259, pp. 637–644. Springer, Berlin (2008)

  26. Navarro, L., Deng, G., Courbebaisse, G.: The symmetric logarithmic image processing model. Digit. Signal Process. 23(5), 1337–1343 (2013)

    Article  MathSciNet  Google Scholar 

  27. Deng, G.: A generalized unsharp masking algorithm. IEEE Trans. Image Process. 20(5), 1249–1261 (2011)

    Article  MathSciNet  Google Scholar 

  28. Fraleigh, J.B.: A First Course in Abstract Algebra. Addison-Wesley Publishing Company, Reading, MA (1978)

    MATH  Google Scholar 

  29. Deng, G.: Parametric generalized linear system based on the notion of the t-norm. IEEE Trans. Image Process. 22(7), 2903–2910 (2013)

    Article  Google Scholar 

  30. Vorobel, R.: Logarithmic type image processing algebras. In: 2010 International Kharkov Symposium on Physics and Engineering of Microwaves, Millimeter and Submillimeter Waves (MSMW), pp. 1–3 (2010)

  31. Dunford, N., Schwartz, J.T.: Linear Operators Part 1: General Theory. Interscience Publishers, New York (1958)

    MATH  Google Scholar 

  32. Corless, R.M., Gonnet, G.H., Hare, D.E.G., Jeffrey, D.J., Knuth, D.E.: On the Lambert W function. Adv. Comput. Math. 5, 329–359 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Peli, E.: Contrast in complex images. J. Opt. Soc. Am. A 7, 2032–2040 (1990)

    Article  Google Scholar 

  34. Hasler, D., Suesstrunk, S.E.: Measuring colorfulness in natural images. In: B.E. Rogowitz, T.N. Pappas (eds.) Human Vision and Electronic Imaging VIII. Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, vol. 5007, pp. 87–95 (2003)

  35. Zuiderveld, K.: Graphics Gems IV. In: Contrast Limited Adaptive Histogram Equalization, pp. 474–485. Academic Press Professional, Inc., San Diego, CA (1994)

  36. Huang, S.C., Cheng, F.C., Chiu, Y.S.: Efficient contrast enhancement using adaptive gamma correction with weighting distribution. IEEE Trans. Image Process. 22(3), 1032–1041 (2013)

    Article  MathSciNet  Google Scholar 

  37. Moroney, N.: Local color correction using non-linear masking. In: IS&T/SID 8th Color Imaging Conference, pp. 108–111 (2000)

  38. Salas, J.G.G., Lisani, J.L.: Local color correction. Image Process. (2011). doi:10.5201/ipol.2011.gl_lcc

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Deng.

Appendix

Appendix

Let \(\varphi (x)\) be a generating function of a GLS. We define a new generating function

$$\begin{aligned} \bar{\varphi }(x)=a\varphi (x) \end{aligned}$$
(40)

where a is a positive constant. The inverse of the generating function is given by \(\bar{\varphi }^{-1}(x)=\varphi ^{-1}(x/a)\). The vector addition due to \(\bar{\varphi }(x)\) is defined as

$$\begin{aligned} x_{1}\oplus x_{2}= & {} \bar{\varphi }^{-1}[\bar{\varphi }(x_{1})+\bar{\varphi }(x_{2})]\nonumber \\= & {} \varphi ^{-1}\left[ \left( a\varphi (x_{1})+a\varphi (x_{2})\right) /a\right] \nonumber \\= & {} \varphi ^{-1}[\varphi (x_{1})+\varphi (x_{2})] \end{aligned}$$
(41)

This is the same as the vector addition defined by using the generating function \(\varphi (x).\) Similarly, we can show that

$$\begin{aligned} \alpha \otimes x= & {} \bar{\varphi }^{-1}[\alpha \bar{\varphi }(x)]\nonumber \\= & {} \varphi ^{-1}[\alpha \varphi (x)] \end{aligned}$$
(42)

Therefore, operations of a GLS are invariant to multiplying its generating function by a positive scaling constant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, G. The Symmetric Generalized LIP Model and Its Application in Dynamic Range Enhancement. J Math Imaging Vis 55, 253–265 (2016). https://doi.org/10.1007/s10851-015-0619-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-015-0619-3

Keywords