Abstract
It is well-known that there are striking analogies between linear shift-invariant systems and morphological systems for image analysis. So far, however, the relations between both system theories are mainly understood on a pure convolution / erosion level. A formal connection on the level of differential or pseudodifferential equations and their induced scale-spaces is still missing. The goal of our paper is to close this gap. We present a simple and fairly general dictionary that allows to translate any linear shift-invariant evolution equation into its morphological counterpart and vice versa. It is based on a scale-space representation by means of the symbol of its (pseudo)differential operator. Introducing a novel transformation, the Cramér–Fourier transform, puts us in a position to relate the symbol to the structuring function of a morphological scale-space of Hamilton–Jacobi type. As an application of our general theory, we derive the morphological counterparts of many linear shift-invariant scale-spaces, such as the Poisson scale-space, \(\alpha \)-scale-spaces, summed \(\alpha \)-scale-spaces, relativistic scale-spaces, and their anisotropic variants. Our findings are illustrated by experiments.





Similar content being viewed by others
References
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. Dover, New York (1974)
Akian, M., Quadrat, J., Viot, M.: Bellman processes. ICAOS ’94: Discrete Event Systems. Lecture Notes in Control and Information Sciences, vol. 199, pp. 302–311. Springer, London (1994)
Alvarez, L., Guichard, F., Lions, P.L., Morel, J.M.: Axioms and fundamental equations in image processing. Arch. Ration. Mech. Anal. 123, 199–257 (1993)
Alvarez, L., Lions, P.L., Morel, J.M.: Image selective smoothing and edge detection by nonlinear diffusion II. SIAM J. Numer. Anal. 29, 845–866 (1992)
Angulo, J.: Pseudo-morphological image diffusion using the counter-harmonic paradigm. In: Blanc-Talon, J., Bone, D., Philips, W., Popescu, D., Scheunders, P. (eds.) Advanced Concepts for Intelligent Vision Systems. Lecture Notes in Computer Science, vol. 6474, pp. 426–437. Springer, Berlin (2010)
Arehart, A.B., Vincent, L., Kimia, B.B.: Mathematical morphology: the Hamilton-Jacobi connection. In: Proceedings of Fourth International Conference on Computer Vision, pp. 215–219. IEEE Computer Society Press, Berlin (1993)
Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, Chichester (1992)
Breuß, M., Burgeth, B., Weickert, J.: Anisotropic continuous-scale morphology. In: Martí, J., Benedí, J.M., Mendonça, A., Serrat, J. (eds.) Pattern Recognition and Image Analysis. Lecture Notes in Computer Science, vol. 4478, pp. 515–522. Springer, Berlin (2007)
Brockett, R.W., Maragos, P.: Evolution equations for continuous-scale morphology. In: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, vol. 3, pp. 125–128. San Francisco, CA (1992)
Burgeth, B., Didas, S., Weickert, J.: The Bessel scale-space. In: Olsen, O., Florack, L., Kuijper, A. (eds.) Deep Structure, Singularities, and Computer Vision. Lecture Notes in Computer Science, vol. 3753, pp. 84–95. Springer, Berlin (2005)
Burgeth, B., Didas, S., Weickert, J.: Relativistic scale-spaces. In: Kimmel, R., Sochen, N., Weickert, J. (eds.) Scale Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459, pp. 1–12. Springer, Berlin (2005)
Burgeth, B., Weickert, J.: An explanation for the logarithmic connection between linear and morphological system theory. Int. J. Comput. Vis. 64(2/3), 157–169 (2005)
Demetz, O., Weickert, J., Bruhn, A., Zimmer, H.: Optic flow scale-space. In: Bruckstein, A.M., ter Haar Romeny, B., Bronstein, A.M., Bronstein, M.M. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 6667, pp. 713–724. Springer, Berlin (2012)
Didas, S., Burgeth, B., Imiya, A., Weickert, J.: Regularity and scale-space properties of fractional high order linear filtering. In: Kimmel, R., Sochen, N., Weickert, J. (eds.) Scale Space and PDE Methods in Computer Vision. Lecture Notes in Computer Science, vol. 3459, pp. 13–25. Springer, Berlin (2005)
Diop, E.H., Angulo, J.: Multiscale image analysis based on robust and adaptive morphological scale-spaces. Image Anal. Stereol. 34(1), 39–50 (2014)
Dorst, L., van den Boomgaard, R.: Morphological signal processing and the slope transform. Signal Process. 38, 79–98 (1994)
Duits, R., Burgeth, B.: Scale spaces on Lie groups. In: Sgallari, F., Murli, A., Paragios, N. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 4485, pp. 300–312. Springer, Berlin (2007)
Duits, R., DelaHaije, T., Creusen, E., Ghosh, A.: Morphological and linear scale spaces for fiber enhancement in DW-MRI. J. Math. Imaging Vis. 46(3), 326–368 (2013)
Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. J. Math. Imaging Vis. 20, 267–298 (2004)
Felsberg, M., Sommer, G.: Scale-adaptive filtering derived from the Laplace equation. In: Radig, B., Florczyk, S. (eds.) Pattern Recognition. Lecture Notes in Computer Science, vol. 2032, pp. 95–106. Springer, Berlin (2001)
Florack, L.: Image Structure, Computational Imaging and Vision, vol. 10. Kluwer, Dordrecht (1997)
Florack, L.M.J., Maas, R., Niessen, W.J.: Pseudo-linear scale-space theory. Int. J. Comput. Vis. 31(2/3), 247–259 (1999)
Guichard, F., Morel, J.M.: Partial differential equations and image iterative filtering. In: Duff, I.S., Watson, G.A. (eds.) The State of the Art in Numerical Analysis. IMA Conference Series (New Series), vol. 63, pp. 525–562. Clarendon Press, Oxford (1997)
Heijmans, H.J.A.M.: Morphological scale-spaces, scale-invariance and Lie groups. In: H. Talbot, R. Beare (eds.) International Symposium on Mathematical Morphology, pp. 253–264 (2002)
Heijmans, H.J.A.M., Maragos, P.: Lattice calculus of the morphological slope transform. Signal Process. 59(1), 17–42 (1997)
Iijima, T.: Basic theory on normalization of pattern (in case of typical one-dimensional pattern). Bull. Electrotech. Lab. 26, 368–388 (1962). In Japanese
Iijima, T.: Basic theory on normalization of two-dimensional visual pattern. Stud. Inf. Control (IECE, Japan) 1, 15–22 (1963). Pattern Recognition Issue. In Japanese
Iijima, T.: Basic equation of figure and observational transformation. Syst. Comput. Controls 2(4), 70–77 (1971)
Jackway, P.T.: Properties of multiscale morphological smoothing by poweroids. Pattern Recognit. Lett. 15(2), 135–140 (1994)
Jackway, P.T.: On dimensionality in multiscale morphological scale-space with elliptic poweroid structuring functions. J. Vis. Commun. Image Represent. 6(2), 189–195 (1995)
Jackway, P.T., Deriche, M.: Scale-space properties of the multiscale morphological dilation-erosion. IEEE Trans. Pattern Anal. Mach. Intell. 18, 38–51 (1996)
Kanters, F., Florack, L., Duits, R., Platel, B., Haar Romeny, B.: ScaleSpaceViz: \(\alpha \)-scale spaces in practice. Pattern Recognit. Image Anal. 17(1), 106–116 (2007)
Kimia, B.B., Siddiqi, K.: Geometric heat equation and non-linear diffusion of shapes and images. Comput. Vis. Image Underst. 64, 305–322 (1996)
Koenderink, J.J.: The structure of images. Biol. Cybernet. 50, 363–370 (1984)
Landström, A.: An approach to adaptive quadratic structuring functions based on the local structure tensor. In: Benediktsson, J.A., Chanussot, J., Najman, L., Talbot, H. (eds.) Mathematical Morphology and Its Applications to Signal and Image Processing. Lecture Notes in Computer Science, vol. 9082, pp. 729–740. Springer, Berlin (2015)
Lindeberg, T.: Scale-Space Theory in Computer Vision. Kluwer, Boston (1994)
Lindeberg, T.: Generalized Gaussian scale-space axiomatics comprising linear scale-space, affine scale-space and spatio-temporal scale-space. J. Math. Imaging Vis. 40, 36–81 (2011)
Lions, P.L.: Generalized Solutions of Hamilton-Jacobi Equations. Research Notes In Mathematics, vol. 69. Pitman, London (1992)
Lowe, D.L.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Lyons, R.G.: Understanding Digital Signal Processing. Prentice Hall, Englewood Cliffs (2004)
Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. Graduate Studies in Mathematics, vol. 161. AMS, Providence (2015)
Maragos, P.: Morphological systems: slope transforms and max-min difference and differential equations. Signal Process. 38(1), 57–77 (1994)
Maragos, P., Schafer, R.: Morphological filters-Part I: their set-theoretic analysis and relations to linear shift-invariant filters. IEEE Trans. Acoust. Speech Signal Process. 35(8), 1153–1169 (1987)
Nielsen, M., Florack, L., Deriche, R.: Regularization, scale-space and edge detection filters. J. Math. Imaging Vis. 7, 291–307 (1997)
Olsen, O., Florack, L., Kuijper, A. (eds.): Deep Structure, Singularities, and Computer Vision. Lecture Notes in Computer Science, vol. 3753. Springer, Berlin (2005)
Oppenheim, A.V., Schafer, R.W., Buck, J.R.: Discrete-Time Signal Processing, 2nd edn. Prentice Hall, Englewood Cliffs (1999)
Otsu, N.: Mathematical studies on feature extraction in pattern recognition. Tech. Rep. 818 (PhD Thesis), Electrotechnical Laboratory, Tsukuba, Japan (1981). (In Japanese)
Pauwels, E.J., Van Gool, L.J., Fiddelaers, P., Moons, T.: An extended class of scale-invariant and recursive scale space filters. IEEE Trans. Pattern Anal. Mach. Intell. 17, 691–701 (1995)
Perona, P., Malik, J.: Scale space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12, 629–639 (1990)
Poggio, T., Voorhees, H., Yuille, A.: A regularized solution to edge detection. J. Complex. 4(2), 106–123 (1988)
Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1970)
Sapiro, G., Tannenbaum, A.: Affine invariant scale-space. Int. J. Comput. Vis. 11, 25–44 (1993)
Scherzer, O., Weickert, J.: Relations between regularization and diffusion filtering. J. Math. Imaging Vis. 12(1), 43–63 (2000)
Schmidt, M., Weickert, J.: The morphological equivalents of relativistic and alpha-scale-spaces. In: Aujol, J., Nikolova, M., Papadakis, N. (eds.) Scale Space and Variational Methods in Computer Vision. Lecture Notes in Computer Science, vol. 9087, pp. 28–39. Springer, Berlin (2015)
Sporring, J., Nielsen, M., Florack, L., Johansen, P. (eds.): Gaussian Scale-Space Theory. Computational Imaging and Vision, vol. 8. Kluwer, Dordrecht (1997)
Taylor, M.: Partial Differential Equations II: Qualitative Studies of Linear Equations. Applied Mathematical Sciences. Springer, New York (2010)
van den Boomgaard, R.: Mathematical morphology: Extensions towards computer vision. Ph.D. thesis, University of Amsterdam, The Netherlands (1992)
van den Boomgaard, R.: The morphological equivalent of the Gauss convolution. Nieuw Archief Voor Wiskunde 10(3), 219–236 (1992)
van den Boomgaard, R., Smeulders, A.: The morphological structure of images: the differential equations of morphological scale-space. IEEE Trans. Pattern Anal. Mach. Intell. 16, 1101–1113 (1994)
Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner, Stuttgart (1998)
Weickert, J., Ishikawa, S., Imiya, A.: Linear scale-space has first been proposed in Japan. J. Math. Imaging Vis. 10(3), 237–252 (1999)
Welk, M.: Families of generalised morphological scale spaces. In: Griffin, L., Lillholm, M. (eds.) Scale Space Methods in Computer Vision. Lecture Notes in Computer Science, vol. 2695, pp. 770–784. Springer, Berlin (2003)
Witkin, A.P.: Scale-space filtering. In: Proceedings of Eighth International Joint Conference on Artificial Intelligence, vol. 2, pp. 945–951. Karlsruhe, West Germany (1983)
Acknowledgments
Our research on this topic has been initiated by discussions between Joachim Weickert and Bernd Sturmfels (Berkeley) during the DEMAIN Conference in Münster (Sept. 30–Oct. 2, 2014). It is a pleasure to thank Angela Stevens (Münster) for organising this highly inspiring interdisciplinary conference.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Schmidt, M., Weickert, J. Morphological Counterparts of Linear Shift-Invariant Scale-Spaces. J Math Imaging Vis 56, 352–366 (2016). https://doi.org/10.1007/s10851-016-0646-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-016-0646-8