Skip to main content
Log in

Image Denoising Using Directional Adaptive Variable Exponents Model

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper, a new variational image denoising model is proposed. The new model could be seen to be a two-step method. In the first step, structure tensor analysis is used to infer something about the local geometry. The eigenvectors and the eigenvalues of the structure tensor are used in the construction of the denoising energy. In the second step, the actual variational denoising takes place. The steps are coupled in the sense that the energy expression is built using the underlying image, not the data. Two variable exponents are incorporated into the regularizer in order to reduce the staircasing effect, which is often present in the methods based on the first-order partial derivatives, and to increase smoothing along the image boundaries. In addition, two pointwise weight functions try to help to preserve small-scale details. In the theoretical part, the existence of a minimizer of a weak form of the original energy is considered. In the numerical part, an algorithm based on iterative minimization is presented and the numerical experiments demonstrate the possible advantages of the new model over some existing variational and partial differential equations methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Bayram, I., Kamasak, M.E.: Directional total variation. IEEE Signal Process. Lett. 19, 781–784 (2012)

    Article  Google Scholar 

  2. Blomgren, P., Mulet, P., Chan, T., Wong, C.: Total variation image restoration: Numerical methods and extensions. In: Proceedings of the IEEE International Conference on Image Processing, vol. 3, pp. 384–387. IEEE Computer Society Press, Piscataway (1997)

  3. Bollt, E.M., Chartrand, R., Esedoglu, S., Schultz, P., Vixie, K.R.: Graduated, adaptive image denoising: local compromise between total-variation and isotropic diffusion. Adv. Comput. Math. 31, 61–85 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bredies, K.: Recovering piecewise smooth multichannel images by minimization of convex functionals with total generalized variation penalty. In: Efficient Algorithms for Global Optimization Methods in Computer Vision, pp. 44–77 (2014)

  5. Bredies, K., Kunisch, K., Pock, T.: Total generalized variation. SIAM J. Imaging Sci. 3, 492–526 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Brox, T., Weickert, J., Burgeth, B., Mrazek, P.: Nonlinear structure tensors. Image Vis. Comput. 24, 41–55 (2006)

    Article  Google Scholar 

  7. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4, 490–530 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, Y., Levine, S., Rao, M.: Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 66, 1383–1406 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16, 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  10. Didas, S., Burgeth, B., Imiya, A., Weickert, J.: Regularity and scale-space properties of fractional high order linear filtering. In: Kimmel, R., Sochen, N.A., Weickert, J. (eds.) Scale Space and PDE Methods in Computer Vision, 5th International Conference, Scale-Space, pp. 13–25. Hofgeismar, Germany (2005)

  11. Didas, S., Weickert, J., Burgeth, B.: Properties of higher order nonlinear diffusion filtering. J. Math. Imaging Vision 35, 208–226 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  12. Duits, R., Florack, L., de Graaf, J., ter Haar Romeny, B.: On the axioms of scale space theory. J. Math. Imaging Vision 20, 267–298 (2004)

    Article  MathSciNet  Google Scholar 

  13. Estellers, V., Soatto, S., Bresson, X.: Adaptive regularization with the structure tensor. IEEE Trans. Image Process. 24, 1777–1790 (2015)

    Article  MathSciNet  Google Scholar 

  14. Förstner, W., Gülch, E.: A fast operator for detection and precise location of distinct points, corners and centres of circular features. In: Proceedings of the ISPRS Intercommission Conference on Fast Processing of Photogrammetric Data, Interlaken, Switzerland, pp. 281–305 (1987)

  15. Grasmair, M., Lenzen, F.: Anisotropic total variation filtering. Appl. Math. Optim. 62, 323–339 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  16. Guo, Z., Sun, J., Zhang, D., Wu, B.: Adaptive Perona–Malik model based on the variable exponent for image denoising. IEEE Trans. Image Process. 21, 958–967 (2012)

    Article  MathSciNet  Google Scholar 

  17. Hahn, J., Lee, C.-O.: A nonlinear structure tensor with the diffusivity matrix composed of the image gradient. J. Math. Imaging Vis. 34, 137–151 (2009)

    Article  MathSciNet  Google Scholar 

  18. Hahn, J., Tai, X.-C., Borok, S., Bruckstein, A.M.: Orientation-matching minimization for image denoising and inpainting. Int. J. Comput. Vis. 92, 308–324 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  19. Hu, Y., Jacob, M.: Higher degree total variation (HDTV) regularization for image recovery. IEEE Trans. Image Process. 21, 2559–2571 (2012)

    Article  MathSciNet  Google Scholar 

  20. Lefkimmiatis, S., Osher, S.: Non-local structure tensor functionals for image regularization. IEEE Trans. Comput. Imaging 1, 16–29 (2015)

    Article  MathSciNet  Google Scholar 

  21. Lefkimmiatis, S., Roussos, A., Maragos, P., Unser, M.: Structure tensor total variation. SIAM J. Imaging Sci. 8, 1090–1122 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  22. Lenzen, F., Berger, J.: Solution-driven adaptive total variation regularization. In: SSVM Proceedings, pp. 203–215 (2015)

  23. Lenzen, F., Becker, F., Lellmann, J.: Adaptive second-order total variation: an approach aware of slope discontinuities. In: Proceedings of the Fourth International Conference on Scale Space and Variational Methods in Computer Vision (SSVM), pp. 61–73 (2013)

  24. Li, F., Li, Z., Pi, L.: Variable exponent functionals in image restoration. Appl. Math. Comput. 216, 870–882 (2010)

    MATH  MathSciNet  Google Scholar 

  25. Lysaker, M., Osher, S., Tai, X.-C.: Noise removal using smoothed normals and surface fitting. IEEE Trans. Image Process. 13, 1345–1357 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  26. Rahman, T., Tai, X-C., Osher, S.: A TV-Stokes denoising algorithm. In: Proceedings of Scale Space and Variational Methods in Computer Vision (SSVM), pp. 473–482 (2007)

  27. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  28. Steidl, G., Teuber, T.: Anisotropic smoothing using double orientations. In: Proceedings of the Second International Conference Scale Space and Variational Methods in Computer Vision, pp. 477–489 (2009)

  29. Takeda, H., Farsiu, S., Milanfar, P.: Kernel regression for image processing and reconstruction. IEEE Trans. Image Process. 16, 349–366 (2007)

    Article  MathSciNet  Google Scholar 

  30. Tschumperlé, D.: PDE’s based regularization of multivalued images and applications, PhD thesis, University of Nice Sophia Antipolis (2002)

  31. Vogel, C.R., Oman, M.E.: Iterative methods for total variation denoising. SIAM J. Sci. Comput. 17, 227–238 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  32. Weickert, J.: Anisotropic Diffusion in Image Processing. Teubner-Verlag, Stuttgart (1998)

    MATH  Google Scholar 

  33. Weickert, J.: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31, 111–127 (1999)

    Article  Google Scholar 

  34. Weickert, J., Romeny, B.M.T.H., Viergever, M.A.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. Image Process. 7, 398–410 (1998)

    Article  Google Scholar 

  35. Zhang, J., Lai, R., Kuo, C.J.: Adaptive directional total-variation model for latent fingerprint segmentation. IEEE Trans. Inf. Forensics Secur. 8, 1261–1273 (2013)

    Article  Google Scholar 

  36. Åstöm, F., Baravdish, G., Felsberg, M.: A Tensor variational formulation of gradient energy total variation. In: Proceedings of the 10th International Conference EMMCVPR, pp. 307–320 (2015)

Download references

Acknowledgments

This work was supported by the Academy of Finland and the Vilho, Yrjö and Kalle Väisälä Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Tiirola.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiirola, J. Image Denoising Using Directional Adaptive Variable Exponents Model. J Math Imaging Vis 57, 56–74 (2017). https://doi.org/10.1007/s10851-016-0666-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-016-0666-4

Keywords

Mathematics Subject Classification

Navigation