Skip to main content
Log in

CUSTOM: A Calibration Region Recovery Approach for Highly Subsampled Dynamic Parallel Magnetic Resonance Imaging

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We propose a recovery approach for highly subsampled dynamic parallel MRI image without auto-calibration signals (ACSs) or prior knowledge of coil sensitivity maps. By exploiting the between-frame redundancy of dynamic parallel MRI data, we first introduce a new low-rank matrix recovery-based model, termed as calibration using spatial–temporal matrix (CUSTOM), for ACSs recovery. The recovered ACSs from data are used for estimating coil sensitivity maps and further dynamic image reconstruction. The proposed non-convex and non-smooth minimization for the CUSTOM step is solved by a proximal alternating linearized minimization method, and we provide its convergence result for this specific minimization problem. Numerical experiments on several highly subsampled test data demonstrate that the proposed overall approach outperforms other state-of-the-art methods for calibrationless dynamic parallel MRI reconstruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Attouch, H., Al, E.: Proximal alternating minimization and projection methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math. Oper. Res. 35(2), 438–457 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beck, A., Teboulle, M.: A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bhatia, R.: Matrix analysis. Grad. Texts Math. 169(8), 1–17 (1996)

    MATH  Google Scholar 

  4. Bolte, J., Sabach, S., Teboulle, M.: Proximal alternating linearized minimization for nonconvex and nonsmooth problems. Math. Program. 146(1–2), 459–494 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Breuer, F.A., Kellman, P., Griswold, M.A., Jakob, P.M.: Dynamic autocalibrated parallel imaging using temporal GRAPPA (TGRAPPA). Magn. Reson. Med. 53(4), 981–985 (2005)

    Article  Google Scholar 

  6. Bruno, M., Glover, G.H., Pelc, N.J.: Unaliasing by Fourier-encoding the overlaps using the temporal dimension (UNFOLD), applied to cardiac imaging and fMRI. Magn. Reson. Med. 42(5), 813–828 (1999)

    Article  Google Scholar 

  7. Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Candès, S.E.J., Li, X., Ma, Y., Wright, J.: Robust principal component analysis. J. ACM 58(3), 1–73 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chandrasekaran, V., Sanghavi, S., Parrilo, P., Willsky, A.S., et al.: Sparse and low-rank matrix decompositions. In: 47th Annual Allerton Conference on Communication, Control, and Computing, 2009. Allerton 2009. pp. 962–967. IEEE (2009)

  10. Daubechies, I., Defrise, M., De Mol, C.: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint. Commun. Pure Appl. Math. 57(11), 1413–1457 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ding, Q., Zan, Y., Huang, Q., Zhang, X.: Dynamic spect reconstruction from few projections: a sparsity enforced matrix factorization approach. Inverse Probl. 31(2) (2015). doi:10.1088/0266-5611/31/2/025004

  12. Gao, H., Cai, J.F., Shen, Z., Zhao, H.: Robust principal component analysis-based four-dimensional computed tomography. Phys. Med. Biol. 56(11), 3181–3198 (2011)

    Article  Google Scholar 

  13. Gao, H., Rapacchi, S., Wang, D., Moriarty, J., Meehan, C., Sayre, J., Laub, G., Finn, P., Hu, P.: Compressed sensing using prior rank, intensity and sparsity model (PRISM): applications in cardiac cine MRI. In: Proceedings of the 20th Annual Meeting of ISMRM, Melbourne, Australia, p. 2242 (2012)

  14. Gao, H., Yu, H., Osher, S., Wang, G.: Multi-energy CT based on a prior rank, intensity and sparsity model (PRISM). Inverse Probl. 27(11), 115012–115033 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Griswold, M.A., Jakob, P.M., Heidemann, R.M., Nittka, M., Jellus, V., Wang, J., Kiefer, B., Haase, A.: Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn. Reson. Med. 47(6), 1202–1210 (2002)

    Article  Google Scholar 

  16. Kellman, P., Epstein, F., Mcveigh, E.: Adaptive sensitivity encoding incorporating temporal filtering (TSENSE). Magn. Reson. Med. 45(45), 846–852 (2001)

    Article  Google Scholar 

  17. Kruse, F.A.: Detecting plumes in LWIR using robust nonnegative matrix factorization with graph-based initialization. In: Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series (2015)

  18. Kurdyka, K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier 48(3), 769–783 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  19. Liang, D., Liu, B., Wang, J., Ying, L.: Accelerating SENSE using compressed sensing. Magn. Reson. Med. 62(6), 1574–1584 (2009)

    Article  Google Scholar 

  20. Liu, J., Zhang, X., Zhang, X., Zhao, H., Gao, Y., Thomas, D., Low, D.A., Gao, H.: 5D respiratory motion model based image reconstruction algorithm for 4D cone-beam computed tomography. Inverse Probl. 31(11) (2015). doi:10.1088/0266-5611/31/11/115007

  21. Łojasiewicz, S.: Sur la géométrie semi- et sous-analytique. Ann. Inst. Fourier 43(5), 1575–1595 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lustig, M., Donoho, D., Pauly, J.M.: Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn. Reson. Med. 58(6), 1182–1195 (2007)

    Article  Google Scholar 

  23. Lustig, M., Pauly, J.M.: SPIRiT: iterative self-consistent parallel imaging reconstruction from arbitrary k-space. Magn. Reson. Med. 64(2), 457–471 (2010)

    Google Scholar 

  24. Otazo, R., Candès, E., Sodickson, D.K.: Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn. Reson. Med. 73(3), 1125–1136 (2014)

    Article  Google Scholar 

  25. Pruessmann, K.P., Weiger, M., Scheidegger, M.B., Boesiger, P.: SENSE: sensitivity encoding for fast MRI. Magn. Reson. Med. 42, 952–962 (1999)

    Article  Google Scholar 

  26. Shin, P.J., Larson, P.E., Ohliger, M.A., Elad, M., Pauly, J.M., Vigneron, D.B., Lustig, M.: Calibrationless parallel imaging reconstruction based on structured low-rank matrix completion. Magn. Reson. Med. 72(4), 959–970 (2014)

    Article  Google Scholar 

  27. Sodickson, D.K., Manning, W.J.: Simultaneous acquisition of spatial harmonics (SMASH): fast imaging with radiofrequency coil arrays. Magn. Reson. Med. 38(4), 591–603 (1997)

    Article  Google Scholar 

  28. Tseng, P., Yun, S.: A coordinate gradient descent method for nonsmooth separable minimization. Math. Program. 117(1), 387–423 (2008)

    MathSciNet  MATH  Google Scholar 

  29. Uecker, M., Lai, P., Murphy, M.J., Virtue, P., Elad, M., Pauly, J.M., Vasanawala, S.S., Lustig, M.: ESPIRiT an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)

    Article  Google Scholar 

  30. Wakabayashi, S., Wakabayashi, S.: Remarks on semi-algebraic functions. ResearchGate (2008)

  31. Wang, H., Liang, D., King, K.F., Nagarsekar, G., Chang, Y., Ying, L.: Improving GRAPPA using cross-sampled autocalibration data. Magn. Reson. Med. 67(4), 1042–1053 (2012)

    Article  Google Scholar 

  32. Wang, J., Kluge, T., Nittka, M., Jellus, V., Kuhn, B., Kiefer, B.: Using reference lines to improve the SNR of mSENSE. In: Proceedings of the 10th Annual Meeting of ISMRM, Honolulu, p. 2392 (2002)

  33. Xu, Y., Yin, W.: A globally convergent algorithm for nonconvex optimization based on block coordinate update. Eprint Arxiv (2014)

  34. Zhang, T., Pauly, J.M., Vasanawala, S.S., Lustig, M.: Coil compression for accelerated imaging with Cartesian sampling. Magn. Reson. Med. 69(2), 571–582 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

Xue Zhang, Likun Hou and Xiaoqun Zhang are partially supported by NSFC (Nos. 91330102 and GZ1025) and 973 Program (No. 2015CB856004). Hao Gao is partially supported by the NSFC (No. 11405105), the 973 Program (No. 2015CB856004), and the Shanghai Pujiang Talent Program (No. 14PJ1404500). We would thank the authors of [23, 24, 26, 29] for making their codes, demos and experimental datasets free for academic use.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoqun Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Hou, L., Gao, H. et al. CUSTOM: A Calibration Region Recovery Approach for Highly Subsampled Dynamic Parallel Magnetic Resonance Imaging. J Math Imaging Vis 57, 366–380 (2017). https://doi.org/10.1007/s10851-016-0682-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-016-0682-4

Keywords

Navigation