Abstract
With the advent of novel 3D image acquisition techniques, their efficient and reliable analysis becomes more and more important. In particular in 3D, the amount of data is enormous and requires for an automated processing. The tasks are manifold, starting from simple image enhancement, image reconstruction, image description and object/feature detection to high-level contextual feature extraction. One important property that most of these tasks have in common is their covariance to rotations. Spherical Tensor Algebra (STA) offers a general framework to fulfill these demands. STA transfers theories from mathematical physics and harmonic analysis into the domain of image analysis and pattern recognition. The main objects of interest are orientation fields. The interpretations of the fields are manifold. Depending on the application, they can represent local image descriptors, features, orientation scores or filter responses. STA deals with the processing of such fields in the domain of the irreducible representations of the rotation group. Two operations are fundamental: the extraction/projection of the features by convolution-like procedures and the nonlinear covariant combination by spherical products. In this paper, we propose an open-source toolbox that implements, in addition to fundamental STA operators, advanced functions for feature detection and image enhancement and makes them accessible to the 3D image processing community. The core features are implemented in C (CPU and GPU) with APIs in C++ and MATLAB. As examples, we show applications for medical and biological images.

























Similar content being viewed by others
Notes
Magnetic Resonance Imaging
Optical Coherence Tomography.
The signal is symmetric.
The Wolfram Functions Site, http://functions.wolfram.com/05.10.06.0027.01.
The Wolfram Functions Site, http://functions.wolfram.com/05.10.23.0008.01.
The Wolfram Functions Site, http://functions.wolfram.com/07.38.06.0003.01.
The Wolfram Functions Site, http://functions.wolfram.com/07.40.03.0017.01, http://functions.wolfram.com/07.40.03.0006.01.
References
Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Ninth Dover printing, tenth gpo printing edn. Dover, New York (1964)
Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K., Harel, N.: Reconstruction of the orientation distribution function in single- and multiple-shell q-ball imaging within constant solid angle. Magn. Reson. Med. 64, 554–566 (2010)
Aguet, F., Jacob, M,. Unser, M.: Three-dimensional feature detection using optimal steerable filters. In: Proceedings of the ICIP, vol. II, pp. 1158–1161, Genova, Italy. IEEE (2005)
Allaire, S., Kim, J.J., Breen, S.L., Jaffray, D.A., Pekar, V.: Full orientation invariance and improved feature selectivity of 3D SIFT with application to medical image analysis. In: Proceedings of the MMBIA, pp. 1–8 (2008)
Antiga, L.: Generalizing vesselness with respect to dimensionality and shape. Insight J. 3 (2007)
Applequist, J.: Traceless cartesian tensor forms for spherical harmonic functions: new theorems and applications to electrostatics of dielectric media. J. Phys. A Math. Gen. 22(20), 4303 (1989)
Arfken, G.B., Weber, H.J.: Mathematical Methods for Physicists, Sixth Edition: A Comprehensive Guide, 6th edn. Academic Press, London (2005)
Ballard, Dana H.: Generalizing the Hough transform to detect arbitrary shapes. Pattern Recognit. 13(2), 111–122 (1981)
Barmpoutis, A., Hwang, M.S., Howland, D., Forder, J.R., Vemuri, B.C.: Regularized positive-definite fourth order tensor field estimation from dw-mri. NeuroImage 45(1 supplement 1), S153–S162 (2009). (mathematics in brain imaging)
Barmpoutis, A., Vemuri, B.C., Howland, D., Forder, J.R.: Extracting tractosemas from a displacement probability field for tractography in DW-MRI. In: Metaxas, D., Axel, L., Fichtinger, G., Székely, G. (eds.) Medical Image Computing and Computer-Assisted Intervention—MICCAI 2008, vol. 11, pp. 9–16. Springer (LNCS), New York, NY, USA (2008)
Barnett, A.: Theory of q-ball imaging redux: implications for fiber tracking. Magn. Reson. Med. 62, 910–923 (2009)
Bigun, J., Granlund, G.H.: Optimal orientation detection of linear symmetry. In: Proceedings of the ICCV, pp. 433–438, London. IEEE (1987)
Bovik, A.C., Clark, M., Geisler, W.S.: Multichannel texture analysis using localized spatial filters. IEEE Trans. Pattern Anal. Mach. Intell. 12(1), 55–73 (1990)
Breiman, Leo: Random forests. Mach. Learn. 45, 5–32 (2001)
Brink, D .M., Satchler, G .R.: Angular Momentum. Oxford Science Publications, Oxford (1993)
Buhmann, J., Lange, J., von der Malsburg, C.: Distortion invariant object recognition by matching hierarchically labeled graphs. In: Proceedings of the IJCNN, the International Joint Conference on Neural Networks, pp. 155–159. IEEE (1989)
Burgeth, B., Didas, S., Weickert, J.: A General Structure Tensor Concept and Coherence-Enhancing Diffusion Filtering for Matrix Fields, pp. 305–323. Springer, Berlin (2009)
Canales-Rodriguez, E.J., Melie-Garcia, L., Iturria-Medina, Y.: Mathematical description of q-space in spherical coordinates: exact Q-ball imaging. Magn. Reson. Med. 61, 1350–1367 (2009)
Caruyer, E., Daducci, A., Descoteaux, M., Houde, J., Thiran, J., Verma, R.: Phantomas: a flexible software library to simulate diffusion MR phantoms. In: ISMRM. Milan, Italy. https://hal.inria.fr/hal-00944644 (2014)
Cheung, W., Hamarneh, G.: N-SIFT: n-dimensional scale invariant feature transform for matching medical images. In: Proceedings of the ISBI, pp. 720–723, Washington, DC. IEEE (2007)
Cheung, W., Hamarneh, G.: Scale invariant feature transform for n-dimensional images (n-SIFT). Insight J. (2007)
Chirikjian, Gregory S., Kyatkin, Alexander B.: An operational calculus for the Euclidean motion group with applications in robotics and polymer science. J. Fourier Anal. Appl. 6(6), 583–606 (2000)
Chirikjian, G.S., Wang, Y.: Engineering Applications of the Motion-Group Fourier Transform. MSRI Publications, Berkeley, CA, USA (2003)
Choorat, P., Chiracharit, W., Chamnongthai, K.: A single tooth segmentation using structural orientations and statistical textures. In: Proceedings of the Biomedical Engineering International Conference (BMEiCON), 2011, pp. 294–297. IEEE (2012)
Di Claudio, E.D., Jacovitti, G., Laurenti, A.A.: Maximum likelihood orientation estimation of 1-D patterns in Laguerre-Gauss subspaces. IEEE Trans. Image Process. 19, 1113–1125 (2010)
Dalal, N., Triggs, B.: Histograms of oriented gradients for human detection. In: Proceedings of the CVPR, pp. 886–893. IEEE (2005)
Daugman, J.G.: Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. J. Opt. Soc. Am. A Opt Image Sci Vis. 2(7), 1160–1169 (1985)
Delputte, S., Dierckx, H., Fieremans, E., D’Asseler, Y., Achten, E., Lemahieu, I.: Postprocessing of brain white matter fiber orientation distribution functions. In: ISBI’07, pp. 784–787 (2007)
Duits, R., Franken, E.: Left-invariant diffusions on the space of positions and orientations and their application to crossing-preserving smoothing of HARDI images. Int. J. Comput. Vis. 92, 231–264 (2011)
Duits, R., Franken, E.M.: Line enhancement and completion via left-invariant scale spaces on SE(2). In: Lecture Notesof Computer Science, Proceedings 2nd International Conference on Scale Space and Variational Methods in Computer Vision, vol. 5567, pp. 795–807 (2009)
Duits, R. Franken, E.M.:Left invariant parabolic evolution equations on SE(2) and contour enhancement via invertible orientation scores, part i: Linear left-invariant diffusion equations on SE(2), part ii: nonlinear left-invariant diffusion equations on invertible orientation scores. Q. Appl. Math. AMS. 68(2), 255–292 (2010)
Duits, R., Führ, H., Janssen, B., Bruurmijn, M., Florack, L., van Assen, H.: Evolution equations on Gabor transforms and their applications. Appl. Comput. Harmon. Anal. 35(3), 483–526 (2013)
Duits, R., Haije T.C.J.D., Ghosh, A., Creusen, E., Vilanova, A., ter Haar Romeny, B.: Fiber enhancement in diffusion-weighted MRI. In: Scale Space and Variational Methods in Computer Vision, pp 1–13. Springer (2011)
Fehr, J.: Local rotation invariant patch descriptors for 3D vector fields. In: Proceedings of the ICPR, pp. 1381–1384. IEEE, Istanbul, Turkey (2010)
Fehr, J., Burkhardt, H.: Phase based 3D texture features. In: Proceedings of the DAGM, pp. 263–272, Berlin, Germany. LNCS, Springer (2006)
Fehr, J., Burkhardt, H.: Harmonic shape histograms for 3D shape classification and retrieval. In: IAPR Workshop on Machine Vision Applications (MVA2007). IEEE Computer Society (2007)
Fehr, J., Reisert, M., Burkhardt, H.: Cross-correlation and rotation estimation of local 3D vector field patches. In: Proceedings of the 5th International Symposium on Advances in Visual Computing: part I, ISVC ’09, pp. 287–296. Springer (2009)
Flitton, G., Breckon, T.P., Megherbi, N., Cranfield, UK.: Object recognition using 3D SIFT in complex CT volumes. In: Proceedings of the BMVC, pp. 11–1, Aberystwyth, UK, BMVA (2010)
Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: General intensity transformations and second order invariants. In: Theory and Applications of Image Analysis: Selected Papers from the 7th Scandinavian Conference on Image Analysis, vol. 2, p. 22. World Scientific Publishing Company Incorporated (1992)
Florack, L.M.J., ter Haar Romeny, B.M., Koenderink, J.J., Viergever, M.A.: General intensity transformations and differential invariants. J. Math. Imaging Vis. 4(2), 171–187 (1994)
Förstner, W.: A feature based correspondence algorithm for image matching. Int. Arch. Photogramm. Remote Sens. 26(3), 150–166 (1986)
Frangi, A.F., Niessen, W.J., Vincken, K.L., Viergever, M. A.: Multiscale vessel enhancement filtering. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 130–137. Springer (1998)
Franken, Erik, Duits, Remco: Crossing-preserving coherence-enhancing diffusion on invertible orientation scores. Int. J. Comput. Vis. 85(3), 253–278 (2009)
Franken, E, Duits, R.: Scale spaces on the 3D euclidean motion group for enhancement of HARDI data. In: Scale Space and Variational Methods in Computer Vision, pp. 820–831. Springer (2009)
Franken, E., van Almsick, M., Rongen, P., Florack, L., ter Haar Romeny, B.:. An efficient method for tensor voting using steerable filters. In: Proceedings of the ECCV 2006, pp. 228–240. Lecture Notes in Computer Science, Springer (2006)
Fuster, A., van de Sande, J., Astola, L.J., Poupon, C., Velterop, J., ter Haar Romeny, B.M.: Fourth-order tensor invariants in high angular resolution diffusion imaging. In: Proceedings of the Workshop on Computational Diffusion MRI (CDMRI’11), part of the MICCAI 2011, Toronto, Canada (2011)
Gabor, D.: Theory of communication. J. Inst. Elect. Eng. 93, 429–441 (1846)
Ghosh, A., Papadopoulo, T., Deriche, R.: Biomarkers for HARDI: 2nd & 4th order tensor invariants. In: 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp. 26–29. IEEE (2012)
Goh, A., Lenglet, C., Thompson, P.M., Vidal, R.: Estimating orientation distribution functions with probability density constraints and spatial regularity. In: Medical Image Computing and Computer-Assisted Intervention—MICCAI 2009, pp. 877–885. Lecture Notes in Computer Science. Springer, Berlin (2009)
González, G., Aguet, F., Fleuret, F., Unser, M., Fua, P.: Steerable features for statistical 3D dendrite detection. In: International Conference on Medical Image Computing and Computer-Assisted Intervention, pp. 625–632. Springer (2009)
Gur, Y., Johnson, C. R.: Generalized HARDI invariants by method of tensor contraction. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 718–721. IEEE (2014)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, p. 50. Manchester, UK (1988)
Hoang, T.V.: Représentations d’images pour la reconnaissance de formes. Ph.D. thesis, Université Nancy II (2011)
Hoang, T.V., Tabbone, S.: Generic polar harmonic transforms for invariant image description. In: Proceedings of the ICIP, pp. 829–832, Brussels, Belgium, IEEE (2011)
Hsu, Y.N., Arsenault, H.H., April, G.: Rotation-invariant digital pattern recognition using circular harmonic expansion. Appl. Opt. 21(22), 4012–4015 (1982)
Hu, P., Zhao, Y., Yang, Z., Wang, J.: Recognition of gray character using Gabor filters. In: Proceedings of the Fifth International Conference on Information Fusion, 2002, vol. 1, pp. 419–424. IEEE (2002)
Jain, A.K., Farrokhnia, F.: Unsupervised texture segmentation using Gabor filters. In: Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, pp. 14–19 (1990)
Jones, Derek K (ed.): Diffusion MRI: Theory, Methods and Applications. Oxford University Press, Oxford (2010)
Kainz, B., Keraudren, K., Kyriakopoulou, V., Rutherford, M., Hajnal, J.V, Rueckert, D.: Fast fully automatic brain detection in fetal MRI using dense rotation invariant image descriptors. In: Proceedings of the ISBI, pp. 1230–1233. IEEE (2014)
Kainz, B., Malamateniou, C., Murgasova, M., Keraudren, K., Rutherford, M., Hajnal, J.V, Rueckert, D.: Motion corrected 3D reconstruction of the fetal thorax from prenatal MRI. In: Proceedings of the MICCAI, pp. 284–291. Springer (2014)
Kakarala, R.: The bispectrum as a source of phase-sensitive invariants for Fourier descriptors: a group-theoretic approach. J. Math. Imaging Vis. 44(3), 341–353 (2012)
Kakarala, Ramakrishna, Mao, Dansheng.: A theory of phase-sensitive rotation invariance with spherical harmonic and moment-based representations. In: Proceedings of the CVPR, pp. 105–112. IEEE (2010)
Kamarainen, J.K., Kyrki, V., Kalviainen, H.: Noise tolerant object recognition using Gabor filtering. In: Proceedings of the DSP 2002, the 14th International Conference on Digital Signal Processing, vol. 2, pp. 1349–1352. IEEE (2002)
Khotanzad, A., Hong, Y.H.: Invariant image recognition by Zernike moments. IEEE Trans. Pattern Anal. Mach. Intell. 12(5), 489–497 (1990)
Knopp, J., Prasad, M., Willems, G., Timofte, R., Van Gool, L.: Hough transform and 3D SURF for robust three dimensional classification. In: Proceedings of the ECCV, Crete, Greece, Springer (2010)
Koenderink, J.J., van Doorn, A.J.: Representation of local geometry in the visual system. Biol. Cybernet. 55, 367–375 (1987)
Koenderink, J.J., van Doorn, A.J.: Generic neighborhood operators. IEEE Trans. Pattern Anal. Mach. Intell. 14(6), 597–605 (1992)
Krainov, V.P., Reiss, H.R., Smirnov, B.M.: Appendix D: Wigner 6j Symbols, in Radiative Processes in Atomic Physics. Radiative Processes in Atomic Physics. John Wiley & Sons, Inc., New York, NY (2005)
Kyrki, V., Kamarainen, J.K., Kälviäinen, H.: Simple Gabor feature space for invariant object recognition. Pattern Recogn. Lett. 25(3), 311–318 (2004)
Liu, K., Skibbe, H., Schmidt, T., Blein, T., Palme, K., Brox, T., Ronneberger, O.: Rotation-invariant HOG descriptors using Fourier analysis in polar and spherical coordinates. Int. J. Comput. Vis. 106(3), 342–364 (2014)
Liu, K., Wang, Q., Driever, W., Ronneberger, O.: 2D/3D rotation-invariant detection using equivariant filters and kernel weighted mapping. In: Proceedings of the CVPR, IEEE (2012)
Mirzaalian, H., Ning, L., Savadjiev, P., Pasternak, O., Bouix, S., Michailovich, O., Grant, G., Marx, C.E., Morey, R.A., Flashman, L.A., et al.: Inter-site and inter-scanner diffusion MRI data harmonization. NeuroImage 135, 311–323 (2016)
Niemeijer, M., Garvin, M.K., K. Lee, B. van Ginneken, Abràmoff, M.D., Sonka, M.: Registration of 3D spectral OCT volumes using 3D SIFT feature point matching. In: Proceedings of the SPIE, vol. 7259, p. 72591I (2009)
Olowoyeye, A., Tuceryan, M., Fang, S.: Medical volume segmentation using bank of Gabor filters. In: Proceedings of the ACM Symposium on Applied Computing, pp. 826–829. ACM (2009)
Osada, K., Furuya, T., Ohbuchi, R.: SHREC08 entry: local volumetric features for 3D model retrieval. In: Proceedings of the Shape Modeling and Applications, SMI, pp. 245–246, New York, USA, IEEE (2008)
Paganelli, C., Peroni, M., Pennati, F., Baroni, G., Summers, P., Bellomi, M., Riboldi, M.: Scale invariant feature transform as feature tracking method in 4D imaging: a feasibility study. In: Engineering in Medicine and Biology Society (EMBC), 2012 Annual International Conference of the IEEE, pp. 6543–6546. IEEE (2012)
Qian, Z., Metaxas, D., Axel, L.: Extraction and tracking of MRI tagging sheets using a 3D Gabor filter bank. In: Proceedings of the IEEE Eng Medicine Biology Society, vol. 1 (2006)
Racah, Giulio: Theory of complex spectra. ii. Phys. Rev. 62, 438–462 (1942)
Reisert, M., Burkhardt, H.: Complex derivative filters. IEEE Trans. Image Process. 17(12), 2265–2274 (2008)
Reisert, M., Burkhardt, H.: Equivariant holomorphic filters for contour denoising and rapid object detection. IEEE Trans. Image Process. 17(2), 190–203 (2008)
Reisert, M., Burkhardt, H.: Harmonic filters for generic feature detection in 3D. In: Proceedings of the DAGM, pp. 131–140, Jena, Germany, LNCS. Springer (2009)
Reisert, M., Burkhardt, H.: Spherical tensor calculus for local adaptive filtering. In: Aja-Fernández, S., de Luis García, R., Tao, D., Li, X. (eds.) Tensors in Image Processing and Computer Vision, Advances in Pattern Recognition, pp. 153–178. Springer, Berlin (2009)
Reisert, M., Kellner, E., Kiselev, V.G.: About the geometry of asymmetric fiber orientation distributions. IEEE Trans. Med. Imaging 31(6), 1240–1249 (2012)
Reisert, M., Kiselev, V.G.: Fiber continuity: an anisotropic prior for ODF estimation. IEEE Trans Med Imaging 30(6), 1274–1283 (2011)
Reisert, M., Mader, I., Anastosoulus, C., Weigel, M., Schnell, S., Kiselev, V.: Global fiber reconstruction becomes practical. Neuroimage 54(2), 955–962 (2010)
Reisert, M., Skibbe, H.: Steerable deconvolution feature detection as an inverse problem. In: Mester, R., Felsberg, M. (eds.) Pattern Recognition, pp. 326–335. Springer (LNCS), Frankfurt/Main, Germany (2011)
Reisert, M., Skibbe, H.: Left-invariant diffusion on the motion group in terms of the irreducible representations of SO(3). arXiv:submit/0423757 [math.AP] (2012)
Rose, M.: Elementary Theory of Angular Momentum. Dover Publications, Mineola (1995)
Sandler, R., Lindenbaum, M.: Optimizing Gabor filter design for texture edge detection and classification. Int. J. Comput. Vis. 84(3), 308–324 (2009)
Savadjiev, P., Campbell, J.S.W., Pike, G.B., Siddiqi, K.: 3D curve inference for diffusion mri regularization and fibre tractography. Med. Image Anal. 10, 799–813 (2006)
Schlachter, M., Reisert, M., Herz, C., Schluermann, F., Lassmann, S., Werner, M., Burkhardt, H., Ronneberger, O.: Harmonic filters for 3D multi-channel data: rotation invariant detection of mitoses in colorectal cancer. IEEE Trans. Med. Imaging 29(8), 1485–1495 (2010)
Schmid, Cordelia, Mohr, Roger: Local grayvalue invariants for image retrieval. IEEE Trans. Pattern Anal. Mach. Intell. 19, 530–535 (1997)
Schmidt, T., Pasternak, T., Liu, K., Blein, T., Aubry-Hivet, D., Dovzhenko, A., Duerr, J., Teale, W., Ditengou, F.A., Burkhardt, H., et al.: The iRoCS Toolbox-3D analysis of the plant root apical meristem at cellular resolution. Plant J. 77(5), 806–814 (2014)
Schnell, S., Saur, D., Kreher, B.W., Hennig, J., Burkhardt, H., Kiselev, V.G.: Fully automated classification of HARDI in vivo data using a support vector machine. Neuroimage 46, 642–651 (2009)
Schwab, E., Çetingül, H. E., Afsari, B., Yassa, M.A., Vidal, R.: Rotation invariant features for HARDI. In: International Conference on Information Processing in Medical Imaging, pp. 705–717. Springer (2013)
Sheng, Y., Shen, L.: Orthogonal Fourier–Mellin moments for invariant pattern recognition. JOSA A 11(6), 1748–1757 (1994)
Skibbe, H.: Spherical Tensor Algebra for Biomedical Image Analysis. Ph.D. thesis, Albert-Ludwigs-Universität Freiburg (2013)
Skibbe, H., Reisert, M.: STA-toolkit. Available online: https://bitbucket.org/skibbe/sta-toolbox/
Skibbe, H., Reisert, M.: Dense rotation invariant brain pyramids for automated human brain parcellation. In Proceedings of the Informatik 2011, Workshop on Emerging Technologies for Medical Diagnosis and Therapy, Berlin, Germany (2011)
Skibbe, H., Reisert, M.: Detection of unique point landmarks in HARDI images of the human brain. In: Proceedings of the Workshop on Computational Diffusion MRI (CDMRI’12), part of the MICCAI 2012, Nice, France (2012)
Skibbe, H., Reisert, M., Burkhardt, H.: SHOG—spherical HOG descriptors for rotation invariant 3D object detection. In: Proc. of the DAGM, pp. 142–151, Frankfurt, Germany, LNCS. Springer (2011)
Skibbe, H., Reisert, M., Ronneberger, O., Burkhardt, H.: Spherical Bessel filter for 3D object detection. In: Proceedings of the ISBI. IEEE, Chicago, Illinois (2011)
Skibbe, H., Reisert, M., Schmidt, T., Brox, T., Ronneberger, O. Burkhardt, H.: Fast rotation invariant 3D feature computation utilizing efficient local neighborhood operators. IEEE Trans. Pattern Anal. Mach. Intell. (2012)
Sorgi, L., Cimminiello, N., Neri, A.: Keypoints selection in the Gauss Laguerre transformed domain. In: Proceedings of the BMVC, vol. II, p. 539. BMVA, Edinburgh, UK (2006)
Suk, T., Flusser, J.: Tensor method for constructing 3D moment invariants. In: Proceedings of the CAIP, pp. 212–219. Springer, Seville, Spain (2011)
Thorne, K.S.: Multipole expansions of gravitational radiation. Rev. Mod. Phys. 52(2), 299 (1980)
Tournier, J.-D., Calamante, F., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)
Tournier, J.D., Calamante, F., Gadian, D.G., Connelly, A.: Robust determination of the fibre orientation distribution in diffusion MRI: non-negativity constrained super-resolved spherical deconvolution. NeuroImage 35(4), 1459–1472 (2007)
Tristan-Vega, Antonio, Westin, C.-F.: Estimation of fiber orientation probability density functions in high angular resolution diffusion imaging. NeuroImage 47(2), 638–650 (2009)
Tschumperle, D., Deriche, R.: DT-MRI images: estimation, regularization and application. In: Proceedings of the NeuroImaging Workshop, Eurocast 2003, Las Palmas de Gran Canaria, pp. 46–47. Springer (2003)
Tuch, D.S.: Q-ball imaging. Magn. Reson. Med. 52(6), 1358–1372 (2004). (English 0740-3194 )
Tuch, D.S., Weisskoff, R.M., Belliveau, J.W., Wedeen, V.J.: High angular resolution diffusion imaging of the human brain. In: Proceedings of the ISMRM, Philadelphia, USA, (1999)
van Almsick, M.A.: Context Models of Lines and Contours. Ph.D. thesis, Eindhoven University of Technology, Department of Biomedical Engineering, Eindhoven, The Netherlands (2005)
Weickert, Joachim: Coherence-enhancing diffusion filtering. Int. J. Comput. Vis. 31(2–3), 111–127 (1999)
Wigner, E.P.: Gruppentheorie und ihre Anwendungen auf die Quantenmechanik der Atomspektren. Vieweg Verlag, Braunschweig (1931)
Wigner, E.P., Griffin, J.J.: Group Theory and Its Application to the Quantum Mechanics of Atomic Spectra. Pure and applied Physics. Academic Press, New York (1959)
Wormer, P.: Angular momentum theory. Lecture Notes—University of Nijmegen Toernooiveld, 6525 ED Nijmegen, The Netherlands
Yang, Bo, Flusser, Jan, Suk, Tomáš: 3D rotation invariants of Gaussian-Hermite moments. Pattern Recognit. Lett. 54, 18–26 (2015)
Yap, P.T., Jiang, X., Kot, A.C.: Two-dimensional polar harmonic transforms for invariant image representation. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1259–1270 (2010)
Yoshimura, H., Etoh, M., Kondo, K., Yokoya, N.: Gray-scale character recognition by Gabor jets projection. In: Proceedings of the ICPR, vol. 2, pp 335–338, Barcelona, Spain, IEEE (2000)
Acknowledgements
This research was supported by the program for Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from Japan Agency for Medical Research and development, AMED. This study was supported by Deutsche Forschungsgemeinschaft (German Research Council) via grants DFG RE 3286/2-1 and DFG KI 1089/3-2. We would like to thank Professor Kei Ito from the Department of Computational Biology, The University of Tokyo, for providing us the image of neurite structures in a drosophila fly brain; Fig. 22.
Author information
Authors and Affiliations
Corresponding author
Appendices
Appendix: Cartesian Tensors
Definition 6
(Epsilon Tensor) The epsilon tensor is defined by
Spherical two Cartesian Transformation: Let \(\mathbf {T}^2\) be a Cartesian tensor of order 2. Then
are the irreducible representations of \(\mathbf {T}^2\) according to (10). The inverse, see (11), is
1.1 Irreducible Components
In this paragraph, we give a brief sketch about the composition of Cartesian tensors with a full DOF in terms of their irreducible counterparts. For a proof and further details, we refer to section 4.4 in [15].
The order of all irreducible components of an order \(j\) Cartesian is \(\le j\). We start with the most simple tensor with directional information, a spherical tensor of order one. The idea is to, based on order one tensors, recursively construct all possible spherical tensors up to order \(j\). The number and orders of the set of tensors are identical to the number and orders of the irreducible components of an order \(j\) Cartesian tensor.
In Sect. 3.1, we have seen that there are, for an order one tensor, three possible operations in each step: decreasing the order (inner product-like operation), keeping the order (cross product-like) and increasing the order (an outer product). With these three operations, we set up Algorithm 1. Table 1 shows the results for tensors up to order 5.

Spherical Harmonics
We always use Racah-normalized spherical harmonics such that \(\mathbf {Y}^\ell (\mathbf {r})^\top \mathbf {Y}^\ell (\mathbf {r}) = 1\), or \(\mathbf {Y}^\ell (\mathbf {r})^\top \mathbf {Y}^\ell (\mathbf {r}') = P_\ell (\cos (\mathbf {r},\mathbf {r}'))\), where the \(P_\ell \) are the Legendre polynomials:
In terms of the associated Legendre polynomials, the components \(Y^\ell _m\) of the spherical harmonics are written as
The Racah-normalized spherical harmonics are orthogonal with respect to
They can be turned into the orthonormal spherical harmonics via \(\sqrt{\frac{2 j+1}{4 \pi }} Y^{\ell }_{m}\).
Mostly, we write \(\mathbf {r} \in S^2\) instead of \((\phi ,\theta )\). The Racah-normalized solid harmonicsFootnote 4 can be written as
where \(\mathbf {r} = (x,y,z)\). They are related to spherical harmonicsFootnote 5 by \(R^\ell _m(\mathbf {r}) /r^\ell = Y^\ell _m(\mathbf {r})\).
The spherical harmonics rotate according to
Coupling two spherical harmonics with each other gives another spherical harmonic of desired order:
Spherical Expansion of the Dirac Delta Function Let \(\mathbf {n},\mathbf {n}'\in S_2\) and \(\delta ^2_{\mathbf {n}}:S_2\rightarrow {\mathbb {R}}\) the delta function on the 2-sphere, whereas \(\delta _{\mathbf {n}}^2(\mathbf {n}')=\delta (\theta -\theta ') \delta (\phi -\phi ')\) and \(\int _{S_2} \delta ^2_{\mathbf {n}}(\mathbf {n}') d \mathbf {n}'=1\). According to [7], page 792,
The Plane Wave The plane wave expansion (see e.g [88], p. 136) in terms of spherical harmonics:
Clebsch–Gordan Coeffcients
The Clebsch–Gordan coefficients written in terms binomial coefficientsFootnote 6 are defined by

see also [1].
The Clebsch–Gordan coefficients of SO(3) fulfill several orthogonality relations:
For particular combinations, there are simple, explicit formulas:
There are several symmetry relations
and associativity relations:
where \(J=j_1+j_2+j_3\) and \(M=m_1+m_2+m_3\). For \(j_3 > j_1+j_2\), there exist further associativities, namely
Wigner 6j-Symbols
Definition 7
(Wigner 6j-Symbols) The Wigner 6j-Symbols are defined by
(see, e.g., [68], page 1, eq. (D.2))
The permutation of any pairs
leaves the value of the 6j symbol unaltered (see [68]). Similar to the Clebsch–Gordan coefficients, there exist simple, explicit expressions for some special cases:Footnote 7
and
a conclusion from Theorem 1.
Wigner-D Matrix
The irreducible representation of SO(3) is called Wigner-D matrices [115, 116]. We denote them by the matrix \(\mathbf {D}^j(g)\in {\mathbb {C}}^{(2j+1)\times (2j+1)}\), where \(j\in {\mathbb {N}}_0\), with \(j=\{0,\ldots ,\infty \}\). The \(j\)th order representation works on a \({\mathbb {C}}^{2j+1}\)-dimensional vector space. We denote the components of \(\mathbf {D}^j(g)\) by \(D^j_{mn}(g)\). In Euler angles in ZYZ convention, we have
where \(d^j_{mn}(\beta )\) is the ’small’ Wigner-d matrix, which is real-valued and explicitly written as
The representations of different orders are connected via the Clebsch–Gordan coefficients by:
see equation 2.3.2 in [15].
Another important equality is
Relation to Spherical Harmonics The Wigner-D matrices build an orthogonal basis for functions in SO(3). Let \(f(\theta ,\phi ,\psi ):SO(3)\rightarrow {\mathbb {C}}\) be a function with \(f(\theta ,\phi ,\psi )=f(\theta ,\phi )\). Let \(A^j_{m,n}\in {\mathbb {C}}\) be the expansion coefficients of f in terms of the Wigner-D matrices. Then the expansion
is the spherical harmonic expansion (up to a constant \(c(j)\,{\in }\,{\mathbb {R}}\)).
Real and Imaginary Tensor Fields
For all spherical tensors, \(\mathbf {v}^j\in {\mathbb {C}}^{2j+1}\) exits a conjugated counterpart \(\left( \mathbf {v}^j\right) ^\ddagger \in {\mathbb {C}}^{2j+1}\), with \(\left( v^j_m\right) ^\ddagger :=(-1)^m \overline{v^j_{-m}}\). The tensor conjugation induces a unique decomposition of the spherical tensor space \({\mathbb {C}}^{2j+1}\) into two vector spaces \(V_j,{{\mathbf {i}}V}_j\subset {\mathbb {C}}^{2j+1}\). Let \(\mathbf {v}^j\in {\mathbb {C}}^{2j+1}\), then
Despite the fact that these vector spaces are complex valued, we treat them as real-valued vector spaces, because they are closed under weighted superposition for the real numbers; i.e., if \(\mathbf {v}^j\in V_j\), then \(\forall \alpha \in {\mathbb {R}}: \alpha \mathbf {v}^j\in V_j\). Same for \({{\mathbf {i}}V}_j\). With this assumption, the spherical tensor space \({\mathbb {C}}^{2j+1}\) is a direct sum of these two subspaces, that is \({\mathbb {C}}^{2j+1}=V_j\oplus {{\mathbf {i}}V}_j\). For the sake of consistency to standard complex numbers, we call the vector space \(V_j\subset {\mathbb {C}}^{2j+1}\) the real spherical tensor space and \({{\mathbf {i}}V}_j\subset {\mathbb {C}}^{2j+1}\) the imaginary spherical tensor space, i.e., we can always represent an \(\mathbf {v}^j\in {{\mathbf {i}}V}_j\) in terms of an \({\mathbf {i}}\mathbf {w}^j\), where \(\mathbf {w}^j\in V_j\) (and vice versa).
Corollary 2
( Symmetry) Let \(\mathbf {v}^j\in V_j\) and \(\mathbf {w}^j\in {{\mathbf {i}}V}_j\). The tensors \(\mathbf {v}^j\) and \(\mathbf {w}^j\) have the following symmetries
This is a direct conclusion from the tensor conjugation property.
(Coupling Three Spherical Tensors) The products defined in each third of this circle are spanning the tensor space of the products of the remaining two thirds. Which means they are mutually linear dependent according to Theorem 1
Tensor Triple Products
Theorem 1
(Coupling Three Spherical Tensors) We have the following identity when coupling three spherical tensors \(\mathbf {u}^{j_1}\in {\mathbb {C}}^{2j_1+1}\), \(\mathbf {v}^{j_2}\in {\mathbb {C}}^{2j_2+1}\) and \(\mathbf {w}^{j_3}\in {\mathbb {C}}^{2j_3+1}\) to form a tensor of rank J based on an intermediate rank \({ |j_1-j_2 |}\le L_{12}\le j_1+j_2\) :
With \(\left\{ \begin{matrix} j_1 &{} j_2 &{} j_4 \\ J &{} j_3 &{} j_5 \end{matrix}\right\} \in {\mathbb {R}}\), we denote the Wigner 6j-symbol (see Sect. 1), which are the weighting factors playing a role when coupling three spherical tensors. With Theorem 1, we can identify the symmetries that exist when coupling three spherical tensors. By exchanging the coupling order of the three tensors, we see that each of the following sets of tensors, \(\{(\mathbf {u}^{j_1} \circ _{J} (\mathbf {v}^{j_2} \circ _{L_{23}} \mathbf {w}^{j_3}))\}_{\forall L_{23}}\), \(\{(\mathbf {w}^{j_3} \circ _{J} (\mathbf {u}^{j_1} \circ _{L_{12}} \mathbf {v}^{j_2}))\}_{\forall L_{12}}\) and \(\{(\mathbf {v}^{j_2} \circ _{J} (\mathbf {u}^{j_1} \circ _{L_{13}} \mathbf {w}^{j_3}))\}_{\forall L_{13}}\), can be formed via linear combination of tensors of only one of the remaining sets. That is, they are mutually linearly dependent. This fact is illustrated in Fig. 26. That is, regarding the computation of linearly independent features it is sufficient (and essential) to compute only one set of features out of those three linearly dependent sets. We use this property for computing an linearly independent set of bi-spectrum features in our applications.
Proof
In the following, we derive Eq. (97). According to [117], page 17, Eq. (90), there exists the recoupling rule
where \(W(j_1 j_2 J j_3,L_{12}L_{23})\in {\mathbb {R}}\) is a Racah W-coefficient [78]. Moreover, the following relation to the Wigner 6j-symbols is known (see, e.g., [105], p. 17, Eqs. (93) and (94))

By just writing out the tensor product of three spherical tensors, and by substituting Eqs. (99) into (98), we can derive the equation in Theorem 1, namely
\(\square \)
Proving corollary 1
We show all three equalities using the recoupling rule Eq. (97). In the first scenario, we have

and in the second scenario

Similarly, the third case can be shown:

\(\square \)
Rights and permissions
About this article
Cite this article
Skibbe, H., Reisert, M. Spherical Tensor Algebra: A Toolkit for 3D Image Processing. J Math Imaging Vis 58, 349–381 (2017). https://doi.org/10.1007/s10851-017-0715-7
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-017-0715-7