Abstract
In this paper, we propose a new class of image similarity metrics based on a wavelet decomposition. By suitably combining weighted contributions of the different dyadic frequency bands, we define a class of similarity measures and we prove it is a metric. Moreover, we discuss the theoretical relationship between the novel class of metrics and the well-known structural similarity index (SSIM) and its multiscale versions (MSSSIM and CWSSIM). By using standard benchmark indexes over a reference database in the literature (the TID2013 database), we test the efficiency of the newly defined metrics in performing similarity assessment. We compare the performance of our metric with other well-known indexes in the literature, such as SSIM, FPH, MSSSIM, CWSSIM and PSNR, to demonstrate its improvement over the current state of the art, which becomes more evident when the query image is the one identified by the worst level of degradation which is perceived by the human visual system, as coded by the standard mean opinion score stored in the database.








Similar content being viewed by others
Change history
25 July 2017
An erratum to this article has been published.
Notes
Average computed over 100 evaluations on images of size 512\(\times \)384 pixels.
References
Amir, D.: Characterizations of Inner Product Spaces. Birkhauser Verlag, Basel (1986)
Apostol, T.: Ptolemy inequality and the chordal metric. Math. Mag. 40, 233–235 (1967)
Brunet, D., Vrscay, E.R., Wang, Z.: Structural similarity-based approximation of signals and images using orthogonal bases. In: Kamel, M., Campilho, A. (eds.) Image Analysis and Recognition, pp. 11–22. Springer, Berlin (2010)
Brunet, D., Vrscay, E.R., Wang, Z.: On the mathematical properties of the structural similarity index. IEEE Trans. Image Process. 21(4), 1488–1499 (2012). doi:10.1109/TIP.2011.2173206
Chang, H., Zhang, J.: New metrics for clutter affecting human target acquisition. IEEE Trans. Aerosp. Electron. Syst. 1(42), 361–368 (2006). doi:10.1109/TAES.2006.1603429
Daubechies, I., et al.: Ten Lectures on Wavelets, vol. 61. SIAM, Philadelphia (1992)
Fawcett, T.: An introduction to ROC analysis. Pattern Recognit. Lett. 27(8), 861–874 (2006)
Hästö, P.A.: A new weighted metric: the relative metric I. Math. Anal. Appl. 274, 38–58 (2002)
Hendee, W.R., Wells, P.N. (eds.): The Perception of Visual Information. Springer, Berlin (1997)
Horé, A., Ziou, D.: Image quality metrics: PSNR vs. SSIM. In: Proceedings of IEEE International Conference on Pattern Recognition, pp. 2366–2369. IEEE, Istanbul, Turkey (2010)
Hsu, C.Y., Lu, C.S.: Geometric distortion-resilient image hashing system and its application scalability. In: Proceedings of the 2004 Workshop on Multimedia and Security, pp. 81–92. ACM, New York, NY, USA (2004). doi:10.1145/1022431.1022448
Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two non striate visual areas of the cat. J. Neurophysiol. 28, 229–289 (1965)
Leach, M.: A complete distortion correction for MR images: Ii. rectification of static-field inhomogeneities by similarity-based profile mapping. PHYSICS IN MEDICINE AND BIOLOGY 50(11), 2651–2661 (2005). http://publications.icr.ac.uk/2089/
Lissner, I., Preiss, J., Urban, P., Lichtenauer, M.S., Zolliker, P.: Image-difference prediction: from grayscale to color. IEEE Trans. Image Pocess. 22(2), 435–446 (2013)
Mallat, S.: A Wavelet Tour of Signal Processing, Third Edition: The Sparse Way, 3rd edn. Academic Press, Cambridge (2008)
Monga, V., Evans, B.L.: Perceptual image hashing via feature points: performance evaluation and tradeoffs. IEEE Trans. Image Pocess. 15(11), 3452–3465 (2006)
Nikvand, N., Wang, Z.: Image distortion analysis based on normalized perceptual information distance. Signal Image Video Process. 7(3), 403–410 (2013)
Okarma, K.: Colour image quality assessment using structural similarity index and singular value decomposition. In: Computer Vision and Graphics, pp. 55–65. Springer (2009)
Okarma, K.: Combined image similarity index. Opt. Rev. 19(5), 349–354 (2012)
Pezoa, J., Torres, S., Cdova, J., Reeves, R.: An enhancement to the constant range method for nonuniformity correction of infrared image sequences. In: A. Sanfeliu, J. Martnez Trinidad, J. Carrasco Ochoa (eds.) Progress in Pattern Recognition, Image Analysis and Applications, Lecture Notes in Computer Science, vol. 3287, pp. 525–532. Springer Berlin Heidelberg (2004)
Piella, G., Heijmans, H.: A new quality metric for image fusion. In: 2003 IEEE International Conference on Image Processing, vol. 2, pp. 173–176. IEEE (2003). doi:10.1109/ICIP.2003.1247209
Ponomarenko, N., Battisti, F., Egiazarian, K., Astola, J., Lukin, V.: Metrics performance comparison for color image database. In: Fourth international workshop on video processing and quality metrics for consumer electronics, vol. 27 (2009)
Ponomarenko, N., Ieremeiev, O., Lukin, V., Egiazarian, K., Jin, L., Astola, J., Vozel, B., Chehdi, K., Carli, M., Battisti, F., Jay Kuo, C.C.: Color image database TID2013: peculiarities and preliminary results. In: Proceedings of the 4th European Workshop on Visual Information Processing EUPIV2013
Ponomarenko, N., Jin, L., Ieremeiev, O., Lukin, V., Egiazarian, K., Astola, J., Vozel, B., Chehdi, K., Carli, M., Battisti, F., Jay Kuo, C.C.: Image database TID2013: peculiarities, results and perspectives. Signal Process. Image Commun. 30, 57–77 (2015)
Ponomarenko, N., Lukin, V., Zelensky, A., Egiazarian, K., Carli, M., Battisti, F.: TID2008-a database for evaluation of full-reference visual quality assessment metrics. Adv. Mod. Radioelectron. 10(4), 30–45 (2009)
Sampat, M.P., Wang, Z., Gupta, S., Bovik, A.C., Markey, M.K.: Complex wavelet structural similarity: a new image similarity index. IEEE Trans. Image Pocess. 18(11), 2385–2401 (2009)
Simoncelli, E.P., Freeman, W.T., Adelson, E.H., Heeger, D.J.: Shiftable multiscale transforms. IEEE Trans. Inform. Theory 38(2), 587–607 (1992)
Snidaro, L., Foresti, G.L.: A multi-camera approach to sensor evaluation in video surveillance. In: 2005 IEEE International Conference on Image Processing, pp. 1101–1104. IEEE (2005)
Solomon, D.: A Guide to Data Compression Methods. Springer, Berlin (2002)
Torres, L.H.: Modern Sampling Theory. Birkhäuser, Basel (2001)
Wang, Z., Bovik, A.C.: Mean squared error: Love it or leave it? A new look at signal fidelity measures. Signal Process. Mag. 26(1), 98–117 (2009)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Pocess. 13(4), 600–612 (2004). doi:10.1109/tip.2003.819861
Wang, Z., Bovik, A.C., Simoncelli, E.P.: Structural approaches to image quality assessment. In: Bovik, A. (ed.) Handbook of Image and Video Processing, chap. 8.3, 2nd edn, pp. 961–974. Academic Press, Cambridge (2005)
Wang, Z., Shang, X.: Spatial pooling strategies for perceptual image quality assessment. In: 2006 IEEE International Conference on Image Processing, pp. 2945–2948. IEEE (2006). doi:10.1109/ICIP.2006.313136
Wang, Z., Simoncelli, E.P., Bovik, A.C.: Multiscale structural similarity for image quality assessment. In: Conference Record of the Thirty-Seventh Asilomar Conference on Signals, Systems and Computers, 2004, vol. 2, pp. 1398–1402. IEEE (2003)
Zujovic, J., Pappas, T.N., Neuhoff, D.L.: Structural texture similarity metrics for image analysis and retrieval. IEEE Trans. Image Pocess. 22(7), 2545–2558 (2013)
Author information
Authors and Affiliations
Corresponding author
Additional information
The original version of this article was revised: The double vertical bars are inserted instead of single vertical bars in Equation 9.
An erratum to this article is available at https://doi.org/10.1007/s10851-017-0751-3.
Rights and permissions
About this article
Cite this article
Albanesi, M.G., Amadeo, R., Bertoluzza, S. et al. A New Class of Wavelet-Based Metrics for Image Similarity Assessment. J Math Imaging Vis 60, 109–127 (2018). https://doi.org/10.1007/s10851-017-0745-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-017-0745-1