Abstract
We introduce a new algorithm that allows the detection of line segments, contours, corners and T-junctions. The proposed model is inspired by the mammal visual system. The detection of corners and T-junctions plays a role as part of the process in contour detection. This method unifies tasks that have been traditionally worked apart. An a-contrario validation is applied to select the most meaningful contours without the need of fixing any critical parameter.
















Similar content being viewed by others
References
Aggarwal, N., Karl, W.C.: Line detection in images through regularized hough transform. IEEE Trans. Image Process. 15(3), 582–591 (2006)
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898–916 (2011)
Awrangjeb, M., Lu, G.: Robust image corner detection based on the chord-to-point distance accumulation technique. IEEE Trans. Multimedia 10(6), 1059–1072 (2008)
Bell, A.J., Sejnowski, T.J.: The independent components of natural scenes are edge filters. Vis. Res. 37(23), 3327–3338 (1997)
Ben-Shahar, O., Huggins, P.S., Izo, T., Zucker, S.W.: Cortical connections and early visual function: intra-and inter-columnar processing. J. Physiol. Paris 97(2), 191–208 (2003)
Ben-Shahar, O., Zucker, S.: Geometrical computations explain projection patterns of long-range horizontal connections in visual cortex. Neural Comput. 16(3), 445–476 (2004)
Bowyer, K., Kranenburg, C., Dougherty, S.: Edge detector evaluation using empirical roc curves. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 354–359. IEEE (1999)
Burns, J.B., Hanson, A.R., Riseman, E.M.: Extracting straight lines. IEEE Trans. Pattern Anal. Mach. Intell. 4, 425–455 (1986)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 6, 679–698 (1986)
Cao, F.: Application of the gestalt principles to the detection of good continuations and corners in image level lines. Comput. Vis. Sci. 7(1), 3–13 (2004)
Cardelino, J., Caselles, V., Bertalmío, M., Randall, G.: A contrario hierarchical image segmentation. In: 16th IEEE International Conference on Image Processing (ICIP), pp. 4041–4044. IEEE (2009)
Caselles, V., Coll, B., Morel, J.M.: A Kanizsa programme. In: Serapioni, R., Tomarelli, F. (eds.) Serapioni, R., Tomarelli, F. (eds.) Variational Methods for Discontinuous Structures, pp. 35–55. Birkhäuser, Basel (1996)
Desolneux, A., Moisan, L., Morel, J.-M.: Meaningful alignments. Int. J. Comput. Vis. 40(1), 7–23 (2000)
Desolneux, A., Moisan, L., Morel, J.-M.: Edge detection by helmholtz principle. J. Math. Imaging Vis. 14(3), 271–284 (2001)
Desolneux, A., Moisan, L., Morel, J.-M.: From Gestalt Theory to Image Analysis, a Probabilistic Approach. Springer, Berlin (2008)
Dickscheid, T., Schindler, F., Förstner, W.: Coding images with local features. Int. J. Comput. Vis. 94(2), 154–174 (2011)
Field, D.J., Hayes, A., Hess, R.F.: Contour integration by the human visual system: evidence for a local “association field”. Vis. Res. 33(2), 173–193 (1993)
Freeman, W.T., Adelson, E.H.: The design and use of steerable filters. IEEE Trans. Pattern Anal. Mach. Intell. 13(9), 891–906 (1991)
Galamhos, C., Matas, J., Kittler, J.: Progressive probabilistic hough transform for line detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 554–560. IEEE (1999)
Gordon, A., Glazko, G., Qiu, X., Yakovlev, A.: Control of the mean number of false discoveries, Bonferroni and stability of multiple testing. Ann. Appl. Stat. 1(1), 179–190 (2007)
Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M., Randall, G.: LSD: a fast line segment detector with a false detection control. IEEE Trans. Pattern Anal. Mach. Intell. 32(4), 722–732 (2010)
Grompone von Gioi, R., Jakubowicz, J., Morel, J.-M., Randall, G.: LSD: a line segment detector. Image Process. On Line 2(3), 35–55 (2012)
Harris, C., Stephens, M.: A combined corner and edge detector. In: Alvey Vision Conference, vol. 15, pp. 10–5244. Citeseer (1988)
Hochberg, Y., Tamhane, A.C.: Multiple Comparison Procedures. Wiley, New York (1987)
Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat’s striate cortex. J. Physiol 148(3), 574–591 (1959)
Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat’s visual cortex. J. Physiol. 160(1), 106–154 (1962)
Ishikawa, H., Geiger, D.: Segmentation by grouping junctions. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Proceedings, pp. 125–131. IEEE (1998)
Kanizsa, G.: Organization in Vision: Essays on Gestalt Perception. Praeger Publishers, Santa Barbara (1979)
Kenney, C.S., Zuliani, M., Manjunath, B.S.: An axiomatic approach to corner detection. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), vol. 1, pp. 191–197. IEEE (2005)
Köthe, U.: Edge and junction detection with an improved structure tensor. In: Michaelis, B., Krell, G. (eds.) Joint Pattern Recognition Symposium, pp. 25–32. Springer, Berlin, Heidelberg (2003)
Lin, L., Peng, S., Porway, J., Zhu, S.C., Wang, Y.: An empirical study of object category recognition: sequential testing with generalized samples. In: IEEE 11th International Conference on Computer Vision, pp. 1–8. IEEE (2007)
Lisani, J.L., Buades, A., Morel, J.-M.: How to explore the patch space. Inverse Probl. Imaging 7(3), 813–838 (2013)
Maire, M., Arbeláez, P., Fowlkes, C., Malik, J.: Using contours to detect and localize junctions in natural images. In: IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)
Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Pattern Anal. Mach. Intell. 26(5), 530–549 (2004)
Mokhtarian, F., Suomela, R.: Robust image corner detection through curvature scale space. IEEE Trans. Pattern Anal. Mach. Intell. 20(12), 1376–1381 (1998)
Morel, J.M., Salembier, P.: Monocular depth by nonlinear diffusion. In: Sixth Indian Conference on Computer Vision, Graphics & Image Processing. ICVGIP’08, pp. 95–102. IEEE (2008)
Nieto, M., Cuevas, C., Salgado, L., García, N.: Line segment detection using weighted mean shift procedures on a 2d slice sampling strategy. Pattern Anal. Appl. 14(2), 149–163 (2011)
Palmer, S.E.: Vision Science: Photons to Phenomenology. The MIT Press, Cambridge (1999)
Pătrăucean, V., Gurdjos, P., Grompone von Gioi, R.: A parameterless line segment and elliptical arc detector with enhanced ellipse fitting. In: Computer Vision—ECCV 2012, pp. 572–585. Springer (2012)
Perona, P., Malik, J.: Detecting and localizing edges composed of steps, peaks and roofs. In: Third International Conference on Computer Vision. Proceedings, pp. 52–57. IEEE (1990)
Püspöki, Z., Uhlmann, V., Vonesch, C., Unser, M.: Design of steerable wavelets to detect multifold junctions. IEEE Trans. Image Process. 25(2), 643–657 (2016)
Püspöki, Z., Unser, M.: Template-free wavelet-based detection of local symmetries. IEEE Trans. Image Process. 24(10), 3009–3018 (2015)
Rakesh, R.R., Chaudhuri, P., Murthy, C.A.: Thresholding in edge detection: a statistical approach. IEEE Trans. Image Process. 13(7), 927–936 (2004)
Sanguinetti, G., Citti, G., Sarti, A.: Implementation of a model for perceptual completion in r 2\(\times \) s 1. In: Ranchordas, A.K., Araújo, H.J., Pereira, J.M., Braz, J. (eds.) Computer Vision and Computer Graphics. Theory and Applications, pp. 188–201. Springer, Berlin, Heidelberg (2009)
Sarti, A., Citti, G., Manfredini, M.: From neural oscillations to variational problems in the visual cortex. J. Physiol. Paris 97(2), 379–385 (2003)
Shui, P.-L., Zhang, W.-C.: Noise-robust edge detector combining isotropic and anisotropic gaussian kernels. Pattern Recognit. 45(2), 806–820 (2012)
Shui, P.-L., Zhang, W.-C.: Corner detection and classification using anisotropic directional derivative representations. IEEE Trans. Image Process. 22(8), 3204–3218 (2013)
Xia, G.-S., Delon, J., Gousseau, Y.: Accurate junction detection and characterization in natural images. Int. J. Comput. Vis. 106(1), 31–56 (2014)
Zhang, W.-C., Shui, P.-L.: Contour-based corner detection via angle difference of principal directions of anisotropic gaussian directional derivatives. Pattern Recognit. 48(9), 2785–2797 (2015)
Zhang, W.-C., Zhao, Y.-L., Breckon, T.P., Chen, L.: Noise robust image edge detection based upon the automatic anisotropic gaussian kernels. Pattern Recognit. 63, 193–205 (2017)
Acknowledgements
The authors would like to thank G. Xia, J. Delon and Y. Gousseau for their code for junction detection. The authors would like to thank N. Oliver for proofreading the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
This work was partially financed by Ministerio de Economia y Competitividad under Grant TIN2014-53772-R.
Rights and permissions
About this article
Cite this article
Buades, A., Grompone von Gioi, R. & Navarro, J. Joint Contours, Corner and T-Junction Detection: An Approach Inspired by the Mammal Visual System. J Math Imaging Vis 60, 341–354 (2018). https://doi.org/10.1007/s10851-017-0763-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-017-0763-z