Skip to main content
Log in

Uncertainty Calibrated Markov Chain Monte Carlo Sampler for Visual Tracking Based on Multi-shape Posterior

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We present a novel tracking system that adaptively selects a shape of the posterior over time, where the selection is efficiently performed by the uncertainty calibrated Markov Chain Monte Carlo (UCMCMC) sampler. In conventional trackers, the posterior is typically described by a single prior distribution. On the other hand, our tracker allows the posterior to have multiple prior distributions, namely normal and Student’s t distribution, and to choose an appropriate distribution according to the tracking environment. The optimal distribution is determined by the UCMCMC sampler in the process of reducing the uncertainty of the shape. Experimental results demonstrate that the proposed multi-shape posterior helps improve the tracking performance in terms of accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. The degree of freedom \(\nu \) used in this test is \(n-1\).

References

  1. Abbasnejad, E., Domke, J., Sanner, S.: Loss-calibrated monte carlo action selection. In: AAAI (2015)

  2. Bibi, A., Mueller, M., Ghanem, B.: Target response adaptation for correlation filter tracking. In: ECCV (2016)

  3. Bolme, D.S., Beveridge, J.R., Draper, B.A., Lui, Y.M.: Visual object tracking using adaptive correlation filters. In: CVPR (2010)

  4. Danelljan, M., Khan, F.S., Felsberg, M., van de Weijer, J.: Adaptive color attributes for real-time visual tracking. In: CVPR (2014)

  5. Danelljan, M., Robinson, A., Khan, F., Felsberg, M.: Beyond correlation filters: Learning continuous convolution operators for visual tracking. In: ECCV (2016)

  6. Dinh, T.B., Vo, N., Medioni, G.: Context tracker: exploring supporters and distracters in unconstrained environments. In: CVPR (2011)

  7. Hare, S., Saffari, A., Torr, P.: Struck: structured output tracking with kernels. In: ICCV (2011)

  8. He, S., Yang, Q., Lau, R., Wang, J., Yang, M.H.: Visual tracking via locality sensitive histograms. In: CVPR (2013)

  9. Henriques, J., Caseiro, R., Martins, P., Batista, J.: Exploiting the circulant structure of tracking-by-detection with kernels. In: ECCV (2012)

  10. Henriques, J., Caseiro, R., Martins, P., Batista, J.: High-speed tracking with kernelized correlation filters. PAMI 37(3), 583–596 (2015)

    Article  Google Scholar 

  11. Hong, S., You, T., Kwak, S., Han, B.: Online tracking by learning discriminative saliency map with convolutional neural network. In ICML (2015)

  12. Isard, M., Blake, A.: Icondensation: Unifying low-level and high-level tracking in a stochastic framework. In: ECCV (1998)

  13. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse appearance model (2012)

  14. Kalal, Z., Mikolajczyk, K., Matas, J.: Tracking–learning–detection. PAMI 34(7), 1409–1422 (2012)

    Article  Google Scholar 

  15. Khan, Z., Balch, T., Dellaert, F.: MCMC-based particle filtering for tracking a variable number of interacting targets. PAMI 27(11), 1805–1918 (2005)

    Article  Google Scholar 

  16. Kwon, J., Dragon, R., Gool, L.V.: Joint tracking and ground plane estimation. IEEE Signal Process. Lett. 23(11), 1514–1517 (2016)

    Article  Google Scholar 

  17. Kwon, J., Lee, K.M.: Visual tracking decomposition. In: CVPR (2010)

  18. Kwon, J., Lee, K.M.: Tracking by sampling trackers. In: ICCV (2011)

  19. Kwon, J., Lee, K.M.: Interval tracker: tracking by interval analysis. In: CVPR (2014)

  20. Kwon, J., Roh, J., Lee, K.M., Van Gool, L.: Robust visual tracking with double bounding box model. In: ECCV (2014)

  21. Wang, L., Ouyang, W., Wang, X., Lu, H.: Visual tracking with fully convolutional networks. In: ICCV (2015)

  22. Li, H., Li, Y., Porikli, F.: Deeptrack: learning discriminative feature representations by convolutional neural networks for visual tracking. In: BMVC (2014)

  23. Liu, B., Huang, J., Yang, L., Kulikowsk, C.: Robust tracking using local sparse appearance model and k-selection. In: CVPR (2011)

  24. Loxam, J., Drummond, T.: Student-\(t\) mixture filter for robust, real-time visual tracking. In: ECCV (2008)

  25. Nam, H., Han, B.: Learning multi-domain convolutional neural networks for visual tracking. In: CVPR (2016)

  26. Perez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: ECCV (2002)

  27. Roh, J., Park, D.W., Kwon, J., Lee, K.M.: Visual tracking using joint inference of target state and segment-based appearance models. In: APSIPA (2013)

  28. Ross, D., Lim, J., Lin, R.S., Yang, M.H.: Incremental learning for robust visual tracking. IJCV 77(1), 125–141 (2008)

    Article  Google Scholar 

  29. Sevilla-Lara, L., Learned-Miller, E.G.: Distribution fields for tracking. In: CVPR (2012)

  30. Sui, Y., Zhang, Z., Wang, G., Tang, Y., Zhang, L.: Real-time visual tracking: promoting the robustness of correlation filter learning. In: ECCV (2016)

  31. Tao, R., Gavves, E., Smeulders, A.W.: Siamese instance search for tracking. In: CVPR (2016)

  32. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: a benchmark. In: CVPR (2013)

  33. Zhang, J., Ma, S., Sclaroff, S.: MEEM: robust tracking via multiple experts using entropy minimization. In: ECCV (2014)

  34. Zhang, T., Ghanem, B., Liu, S., Ahuja, N.: Robust visual tracking via multi-task sparse learning. In: CVPR (2012)

  35. Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collaborative model. In: CVPR (2012)

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (No. 2017R1C1B1003354).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junseok Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kwon, J. Uncertainty Calibrated Markov Chain Monte Carlo Sampler for Visual Tracking Based on Multi-shape Posterior. J Math Imaging Vis 60, 681–691 (2018). https://doi.org/10.1007/s10851-017-0783-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0783-8

Keywords