Skip to main content
Log in

Algorithm and Constraints for Exact Non-blind Deconvolution

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

Image filtering is generally an irreversible process. Image restoration methods, such as inverse filtering or other deconvolution techniques, cannot precisely recover the original image and often introduce some level of artifacts. In the current paper, we formulate the filtering as a blending of several transformed replications of the original image. We assume zero noise after the filtering. Using this convention, we propose a method that precisely restores the original image from its filtered version. The method is applicable for a family of filters including average box filters and approximated Gaussian filters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Barrett, W.A., Cheney, A.S.: Object-based image editing. ACM Trans. Graph. 21, 777–784 (2002)

    Article  Google Scholar 

  2. Biggs, D.S., Andrews, M.: Acceleration of iterative image restoration algorithms. Appl. Opt. 36(8), 1766–1775 (1997)

    Article  Google Scholar 

  3. Buades, A., Coll, B., Morel, J.M.: A review of image denoising algorithms, with a new one. Multiscale Model. Simul. 4(2), 490–530 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  4. Campisi, P., Egiazarian, K.: Blind Image Deconvolution: Theory and Applications. CRC Press, Boca Raton (2016)

    Google Scholar 

  5. Caruso, R.D., Postel, G.C.: Image editing with Adobe Photoshop 6.0. Radiographics. 22(4), 993–1002 (2002)

  6. Chan, S.H., Gill, P.E., Nguyen, T.Q.: User guide for deconvtv (matlab version 1.0). http://scholar.harvard.edu/files/stanleychan/files/deconvtv_v1_0.zip (2013). Accessed 17 July 2017

  7. Chan, S.H., Khoshabeh, R., Gibson, K.B., Gill, P.E., Nguyen, T.Q.: An augmented Lagrangian method for total variation video restoration. IEEE Trans. Image Process. 20(11), 3097–3111 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Donoho, D.L.: Nonlinear solution of linear inverse problems by wavelet–vaguelette decomposition. Appl. Comput. Harmon. Anal. 2(2), 101–126 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Geman, D., Reynolds, G.: Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14(3), 367–383 (1992)

    Article  Google Scholar 

  10. Geman, D., Yang, C.: Nonlinear image recovery with half-quadratic regularization. IEEE Trans. Image Process. 4(7), 932–946 (1995)

    Article  Google Scholar 

  11. Hillery, A.D., Chin, R.T.: Iterative wiener filters for image restoration. IEEE Trans. Signal Process. 39(8), 1892–1899 (1991)

    Article  Google Scholar 

  12. Joshi, N., Zitnick, C.L., Szeliski, R., Kriegman, D.J.: Image deblurring and denoising using color priors. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 1550–1557. IEEE (2009)

  13. Krishnan, D., Fergus, R.: Fast image deconvolution using hyper-Laplacian priors. In: Proceedings of the 22nd International Conference on Neural Information Processing Systems, pp. 1033–1041. Curran Associates Inc., (2009)

  14. Levin, A., Fergus, R., Durand, F., Freeman, W.T.: Image and depth from a conventional camera with a coded aperture. ACM Trans. Graph. 26(3), 70 (2007)

    Article  Google Scholar 

  15. Lim, J.S.: Two-dimensional signal and image processing, vol. 1, p. 710. Prentice Hall, Englewood Cliffs (1990)

    Google Scholar 

  16. Michel, J.B., Shen, Y.K., Aiden, A.P., Veres, A., Gray, M.K., Pickett, J.P., Hoiberg, D., Clancy, D., Norvig, P., Orwant, J.: The Google books team: quantitative Danalysis of culture using millions of digitized books. Science 331, 176–182 (2011)

    Article  Google Scholar 

  17. Neelamani, R., Choi, H., Baraniuk, R.: Forward: Fourier-wavelet regularized deconvolution for ill-conditioned systems. IEEE Trans. Signal Process. 52(2), 418–433 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  18. Rice, J.: Mathematical Statistics and Data Analysis. Cengage Learning, Boston (2006)

    Google Scholar 

  19. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shao, L., Yan, R., Li, X., Liu, Y.: From heuristic optimization to dictionary learning: a review and comprehensive comparison of image denoising algorithms. IEEE Trans. Cybern. 44(7), 1001–1013 (2014)

    Article  Google Scholar 

  21. Stewart, C.V.: Robust parameter estimation in computer vision. SIAM Rev. 41(3), 513–537 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  22. Wang, Y., Yang, J., Yin, W., Zhang, Y.: A new alternating minimization algorithm for total variation image reconstruction. SIAM J. Imaging Sci. 1(3), 248–272 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Whitt, P.: Beginning Photo Retouching and Restoration Using GIMP. Apress, New York (2014)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yechiel Lamash.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamash, Y. Algorithm and Constraints for Exact Non-blind Deconvolution. J Math Imaging Vis 60, 692–706 (2018). https://doi.org/10.1007/s10851-017-0784-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-017-0784-7

Keywords