Abstract
In this paper, a new set of quaternion radial-substituted Chebyshev moments (QRSCMs) is proposed for color image representation and recognition. These new moments are circular moments defined over a unit disk by using a new set of orthogonal basis functions called radial-substituted Chebyshev functions. A new hybrid method is proposed for highly accurate computation of QRSCMs in polar coordinates. In this method, the angular kernel is exactly computed by analytical integration of Fourier function over circular pixels. The radial kernel is computed using a recurrence relation which completely eliminates the coefficient matrix associated with the radial-substituted Chebyshev functions. Rotation, scaling, and translation (RST) invariances for QRSCMs are proved. Numerical experiments were conducted where the results of these experiments show better performance of QRSCMs over existing quaternion moments in terms of image reconstruction capabilities, RST invariances, robust to different noises, and CPU elapsed times.


















Similar content being viewed by others
References
Flusser, J., Zitova, B., Suk, T.: Moments and Moment Invariants in Pattern Recognition. Wiley, New York (2009). (ISBN: 978-0-470-69987-4)
Teague, M.R.: Image analysis via the general theory of moments. J. Opt. Soc. Am. 70(8), 920–930 (1980)
Bailey, R., Srinath, M.: Orthogonal moment features for use with parametric and non-parametric classifiers. IEEE Trans. Pattern Anal. Mach. Intell. 18(4), 389–399 (1996)
Sheng, Y., Shen, L.: Orthogonal Fourier–Mellin moments for invariant pattern recognition. J. Opt. Soc. Am. A 11(6), 1748–1757 (1994)
Ping, Z.L., Wu, R., Sheng, Y.L.: Image description with Chebyshev–Fourier moments. J. Opt. Soc. Am. A 19(9), 1748–1754 (2002)
Ren, H.P., Ping, Z.L., Wurigen, Y.L., Sheng, Y.: Multi-distorted invariant Image recognition with radial-harmonic-Fourier moments. J. Opt. Soc. Am. A 20(4), 631–637 (2003)
Ping, Z., Ren, H., Zou, J., Sheng, Y., Bo, W.: Generic orthogonal moments: Jacobi–Fourier moments for invariant image description. Pattern Recogn. 40, 1245–1254 (2007)
Yap, P., Jiang, X., Kot, A.C.: Two dimensional polar harmonic transforms for invariant image representation. IEEE Trans. Pattern Anal. Mach. Intell. 32(7), 1259–1270 (2010)
Xiao, B., Wang, G., Li, W.: Radial shifted Legendre moments for image analysis and invariant image recognition. Image Vis. Comput. 32(12), 994–1006 (2014)
Guo, F., Ye, S., Yang, T., Wang, X.: Robust circularly orthogonal moment based on Chebyshev rational function. Dig. Signal Proc. 62, 249–258 (2017)
Chen, B.J., Shu, H.Z., Zhang, H., Chen, G., Toumoulin, C., Dillenseger, J.L., Luo, L.M.: Quaternion Zernike moments and their invariants for color image analysis and object recognition. Signal Process. 92(1), 308–318 (2012)
Chen, B.J., Sun, X.M., Wang, D.C., Zhao, X.P.: Color face recognition using quaternion representation of color image. ACTA Autom. Sin. 38(11), 1815–1823 (2012)
Guo, L., Zhu, M.: Quaternion Fourier–Mellin moments for color images. Pattern Recogn. 44(2), 187–195 (2011)
Wang, X.Y., Li, W.Y., Yang, H.Y., Niu, P.P., Li, Y.W.: Invariant quaternion radial harmonic Fourier moments for color image retrieval. Opt. Laser Technol. 66, 78–88 (2015)
Wang, X., Li, W., Yang, H., Wang, P., Li, Y.: Quaternion polar complex exponential transform for invariant color image description. Appl. Math. Comput. 256, 951–967 (2015)
Yang, H., Liang, L., Li, Y., Wang, X.: Quaternion exponent moments and their invariants for color image. Fund. Inf. 145, 189–205 (2016)
Hamilton, W.R.: Elements of Quaternions. Longmans Green, London (1866)
Hosny, K.M., Shouman, M.A., Abdel-Salam, H.M.: Fast computation of orthogonal Fourier–Mellin moments in polar coordinates. J. Real-Time Image Process. 6(1), 73–80 (2011)
Hosny, K.M.: Accurate orthogonal circular moment invariants of gray-level images. J. Comput. Sci. 7(5), 715–722 (2011)
Liu, C., Huang, X.-H., Wang, M.: Fast computation of Zernike moments in polar coordinates. IET Image Proc. 6(7), 996–1004 (2012)
Xin, Y., Pawlak, M., Liao, S.: Accurate computation of Zernike moments in polar coordinates. IEEE Trans. Image Process. 16(1), 581–587 (2007)
Harris, J.W., Stocker, H.: Handbook of Mathematics and Computational Science. Springer, New York (1998)
Faires, J.D., Burden, R.L.: Numerical Methods, 3rd edn. Brooks Cole Publication, London (2002)
Camacho-Bello, C., et al.: High precision and fast computation of Jacobi–Fourier moments for image description. J. Opt. Soc. Am. A 31(1), 124–134 (2014)
Camacho-Bello, C., et al.: Reconstruction of color biomedical images by means of quaternion generic Jacobi–Fourier moments in the framework of polar pixel. J. Med. Imaging 3(1), 014004 (2016)
Hosny, K.M., Darwish, M.M.: Highly accurate and numerically stable higher order QPCET moments for color image representation. Pattern Recogn. Lett. 97, 29–36 (2017)
http://www.cs.columbia.edu/CAVE/software/softlib/coil-100.php
Suk, T., Flusser, J.: Affine moment invariants of color images. In: The 13th International Conference on Computer Analysis of Images and Patterns, Lecture Notes Computer Science, vol. 5702, pp. 334–341. Münste, Germany (2009)
Lazebnik, S., Schmid, C., Ponce, J.: A maximum entropy framework for part-based texture and object recognition. Proc. IEEE Int. Conf. Comput. Vis. Beijing China 1, 832–838 (2005)
Lazebnik, S., Schmid, C., Ponce, J.: Semi-local affine parts for object recognition. Proc. Br. Mach. Vis. Conf. 2, 959–968 (2004)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hosny, K.M., Darwish, M.M. New Set of Quaternion Moments for Color Images Representation and Recognition. J Math Imaging Vis 60, 717–736 (2018). https://doi.org/10.1007/s10851-018-0786-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-018-0786-0