Skip to main content

Advertisement

Log in

Ellipse Motion Estimation Using Parametric Snakes

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

In this paper we propose a multiscale parametric snake model for ellipse motion estimation across a sequence of images. We use a robust ellipse parameterization based on the geometry of the intersection of a cylinder and a plane. The ellipse parameters are optimized in each frame by searching for local minima of the snake model energy including temporal coherence in the ellipse motion. One advantage of this method is that it just considers the convolution of the image with a Gaussian kernel and its gradient, and no edge detection is required. A detailed study about the numerical evaluation of the snake energy on ellipses is presented. We propose a Newton–Raphson-type algorithm to estimate a local minimum of the energy. We present some experimental results on synthetic data, real video sequences and 3D medical images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Notes

  1. We use the implementation of this method available at goo.gl.

  2. We use the implementation of this method available at bigwww.epfl.ch.

References

  1. Alemán-Flores, M., Alvarez, L., Caselles, V.: Texture-oriented anisotropic filtering and geodesic active contours in breast tumor ultrasound segmentation. J. Math. Imaging Vis. 28(1), 81–97 (2007)

    Article  MathSciNet  Google Scholar 

  2. Alvarez, L., Baumela, L., Henriquez, P., Marquez-Neila, P.: Morphological snakes. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2197–2202 (2010)

  3. Alvarez, L., Trujillo, A., Cuenca, C., González, E., Esclarín, J., Gomez, L., Mazorra, L., Alemán-Flores, M., Tahoces, P.G., Carreira, J.M.: Tracking the Aortic Lumen Geometry by Optimizing the 3D Orientation of Its Cross-sections. In: MICCAI, Proceedings, Part II, LNCS, vol. 10434, pp. 174–181 (2017)

  4. Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Springer Publishing Company, Incorporated, Berlin (2010)

    MATH  Google Scholar 

  5. Bascle, B., Deriche, R.: Features extraction using parametric snakes. In: 11th IAPR International Conference on Pattern Recognition, 1992. Vol. III. Conference C: Image, Speech and Signal Analysis, Proceedings, pp. 659–662. IEEE (1992)

  6. Brox, T., Bruhn, A., Papenberg, P., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Computer Vision—ECCV 2004: 8th European Conference on Computer Vision, Prague, Czech Republic, 11–14 May 2004. Proceedings, Part IV, pp. 25–36. Springer, Berlin (2004)

  7. Brox, T., Kim, Y.-J., Weickert, J., Feiden, W.: Fully-automated analysis of muscle fiber images with combined region and edge-based active contours. In: Handels, H., Ehrhardt, J., Horsch, A., Meinzer, H.-P., Tolxdorff, Thomas (eds.) Bildverarbeitung fr die Medizin 2006. Informatik aktuell, pp. 86–90. Springer, Berlin (2006)

    Chapter  Google Scholar 

  8. Brox, T., Rousson, M., Deriche, R., Weickert, J.: Colour, texture, and motion in level set based segmentation and tracking. Image Vis. Comput. 28(3), 376–390 (2010)

    Article  Google Scholar 

  9. Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Nume. Math. 66(1), 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  10. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  11. Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  12. Cuenca, C., González, E., Trujillo, A., Esclarín, J., Mazorra, L., Alvarez, L., Martínez-Mera, J.A., Tahoces, P.G., Carreira, J.M.: Fast and accurate circle tracking using active contour models. J. Real-Time Image Process. (2015). https://doi.org/10.1007/s11554-015-0531-5

  13. Debreuve, E., Barlaud, M., Marmorat, J.-P., Aubert, G.: Active contour segmentation with a parametric shape prior: link with the shape gradient. In: ICIP, pp. 1653–1656. IEEE (2006)

  14. Delgado-Gonzalo, R., Thevenaz, P., Seelamantula, C.S., Unser, M.: Snakes with an ellipse-reproducing property. IEEE Trans. Image Process. 21(3), 1258–1271 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Delgado-Gonzalo, R., Uhlmann, V., Schmitter, D., Unser, M.: Snakes on a plane: a perfect snap for bioimage analysis. IEEE Signal Process. Mag. 32(1), 41–48 (2015)

    Article  Google Scholar 

  16. Elefteriades, J.A.: Indications for aortic replacement. J. Thorac. Cardiovasc. Surg. 140(6 Suppl), S5 (2010)

    Article  Google Scholar 

  17. Getreuer, P.: Chan–Vese Segmentation. Image Process. On Line 2, 214–224 (2012)

    Article  Google Scholar 

  18. Getreuer, P.: A survey of Gaussian convolution algorithms. Image Process. On Line 3, 286–310 (2013)

    Article  Google Scholar 

  19. Guerrero, J., Salcudean, S.E., McEwen, J.A., Masri, B.A., Nicolaou, S.: Real-time vessel segmentation and tracking for ultrasound imaging applications. IEEE Trans. Med. Imaging 26(8), 1079–1090 (2007)

    Article  Google Scholar 

  20. Hough, P.V.C.: Method and means for recognizing complex patterns. US Patent 3,069,654, Dec 1962

  21. Jacob, M., Blu, T., Unser, M.: Efficient energies and algorithms for parametric snakes. IEEE Trans. Image Process. 13, 1231–1244 (2004)

    Article  Google Scholar 

  22. Kanatani, K., Sugaya, Y., Kanazawa, Y.: Ellipse fitting for computer vision: implementation and applications. Synthesis Lectures on Computer Vision 6(1), 1–141 (2016)

    Article  Google Scholar 

  23. Levenverg, K.: A method for the solution of certain non-linear problems in least-squares. Q. Appl. Math. 2(2), 164–168 (1944)

    Article  MathSciNet  Google Scholar 

  24. Marquez-Neila, P., Baumela, L., Alvarez, L.: A morphological approach to curvature-based evolution of curves and surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 2–17 (2014)

    Article  Google Scholar 

  25. Pao, D.C.W., Li, Hon F., Jayakumar, R., Jayakumar, R.: Shapes recognition using the straight line Hough transform: theory and generalization. IEEE Trans. Pattern Anal. Mach. Intell. 14(11), 1076–1089 (1992)

    Article  Google Scholar 

  26. Paragios, N., Deriche, R.: Geodesic active regions and level set methods for motion estimation and tracking. Comput. Vis. Image Underst. 97(3), 259–282 (2005)

    Article  Google Scholar 

  27. Porrill, J.: Fitting ellipses and predicting confidence envelopes using a bias corrected Kalman filter. Image Vis. Comput. 8(1), 37–41 (1990)

    Article  Google Scholar 

  28. Ptrucean, V., Gurdjos, P., von Gioi, R.: A parameterless line segment and elliptical arc detector with enhanced ellipse fitting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, Cordelia (eds.) Computer Vision ECCV 2012. Lecture Notes in Computer Science, pp. 572–585. Springer, Berlin (2012)

    Chapter  Google Scholar 

  29. Otero, I.R., Delbracio, M.: Computing an exact Gaussian scale-space. Image Process. On Line 6, 8–26 (2016)

    Article  Google Scholar 

  30. Sponton, H., Cardelino, J.: A review of classic edge detectors. Image Process. On Line 5, 90–123 (2015)

    Article  MathSciNet  Google Scholar 

  31. Tahoces, P.G., Alvarez, L., González, E., Cuenca, C., Trujillo, A., Santana-Cedrés, D., Esclarín, J., Gomez, L., Mazorra, L., Alemán-Flores, M., Carreira, J.M.: Automatic estimation of the aortic lumen geometry by ellipse tracking. Preprint http://www.ctim.es/papers/AutomaticEstimationAorticLumen.pdf

  32. Thevenaz, P., Delgado-Gonzalo, R., Unser, M.: The ovuscule. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 382–393 (2011)

    Article  Google Scholar 

  33. Tsuji, S., Matsumoto, F.: Detection of ellipses by a modified Hough transformation. IEEE Trans. Comput. 27(8), 777–781 (1978)

    Article  Google Scholar 

  34. Vincze, M.: Robust tracking of ellipses at frame rate. Pattern Recognit. 34(2), 487–498 (2001)

    Article  MATH  Google Scholar 

  35. Volz, S., Bruhn, A., Valgaerts, L., Zimmer, H.: Modeling temporal coherence for optical flow. In: 2011 International Conference on Computer Vision, pp. 1116–1123. Barcelona (2011)

  36. Xie, Y., Ji, Q.: A new efficient ellipse detection method. In: 16th International Conference on Pattern Recognition, 2002. Proceedings, vol. 2, pp. 957–960 (2002)

  37. Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. Int. J. Comput. Vision 93(3), 368–388 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This research has partially been supported by the MIN- ECO Projects References TIN2016-76373-P (AEI/FED- ER, UE) and MTM2016-75339-P (AEI/FEDER, UE) (Ministerio de Economía y Competitividad, Spain).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Alvarez.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alvarez, L., González, E., Cuenca, C. et al. Ellipse Motion Estimation Using Parametric Snakes. J Math Imaging Vis 60, 1095–1110 (2018). https://doi.org/10.1007/s10851-018-0798-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-018-0798-9

Keywords

Navigation