Abstract
In this paper we propose a multiscale parametric snake model for ellipse motion estimation across a sequence of images. We use a robust ellipse parameterization based on the geometry of the intersection of a cylinder and a plane. The ellipse parameters are optimized in each frame by searching for local minima of the snake model energy including temporal coherence in the ellipse motion. One advantage of this method is that it just considers the convolution of the image with a Gaussian kernel and its gradient, and no edge detection is required. A detailed study about the numerical evaluation of the snake energy on ellipses is presented. We propose a Newton–Raphson-type algorithm to estimate a local minimum of the energy. We present some experimental results on synthetic data, real video sequences and 3D medical images.












Similar content being viewed by others
Notes
We use the implementation of this method available at goo.gl.
We use the implementation of this method available at bigwww.epfl.ch.
References
Alemán-Flores, M., Alvarez, L., Caselles, V.: Texture-oriented anisotropic filtering and geodesic active contours in breast tumor ultrasound segmentation. J. Math. Imaging Vis. 28(1), 81–97 (2007)
Alvarez, L., Baumela, L., Henriquez, P., Marquez-Neila, P.: Morphological snakes. In: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2197–2202 (2010)
Alvarez, L., Trujillo, A., Cuenca, C., González, E., Esclarín, J., Gomez, L., Mazorra, L., Alemán-Flores, M., Tahoces, P.G., Carreira, J.M.: Tracking the Aortic Lumen Geometry by Optimizing the 3D Orientation of Its Cross-sections. In: MICCAI, Proceedings, Part II, LNCS, vol. 10434, pp. 174–181 (2017)
Aubert, G., Kornprobst, P.: Mathematical Problems in Image Processing: Partial Differential Equations and the Calculus of Variations, 2nd edn. Springer Publishing Company, Incorporated, Berlin (2010)
Bascle, B., Deriche, R.: Features extraction using parametric snakes. In: 11th IAPR International Conference on Pattern Recognition, 1992. Vol. III. Conference C: Image, Speech and Signal Analysis, Proceedings, pp. 659–662. IEEE (1992)
Brox, T., Bruhn, A., Papenberg, P., Weickert, J.: High accuracy optical flow estimation based on a theory for warping. In: Computer Vision—ECCV 2004: 8th European Conference on Computer Vision, Prague, Czech Republic, 11–14 May 2004. Proceedings, Part IV, pp. 25–36. Springer, Berlin (2004)
Brox, T., Kim, Y.-J., Weickert, J., Feiden, W.: Fully-automated analysis of muscle fiber images with combined region and edge-based active contours. In: Handels, H., Ehrhardt, J., Horsch, A., Meinzer, H.-P., Tolxdorff, Thomas (eds.) Bildverarbeitung fr die Medizin 2006. Informatik aktuell, pp. 86–90. Springer, Berlin (2006)
Brox, T., Rousson, M., Deriche, R., Weickert, J.: Colour, texture, and motion in level set based segmentation and tracking. Image Vis. Comput. 28(3), 376–390 (2010)
Caselles, V., Catté, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Nume. Math. 66(1), 1–31 (1993)
Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)
Chan, T.F., Vese, L.A.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)
Cuenca, C., González, E., Trujillo, A., Esclarín, J., Mazorra, L., Alvarez, L., Martínez-Mera, J.A., Tahoces, P.G., Carreira, J.M.: Fast and accurate circle tracking using active contour models. J. Real-Time Image Process. (2015). https://doi.org/10.1007/s11554-015-0531-5
Debreuve, E., Barlaud, M., Marmorat, J.-P., Aubert, G.: Active contour segmentation with a parametric shape prior: link with the shape gradient. In: ICIP, pp. 1653–1656. IEEE (2006)
Delgado-Gonzalo, R., Thevenaz, P., Seelamantula, C.S., Unser, M.: Snakes with an ellipse-reproducing property. IEEE Trans. Image Process. 21(3), 1258–1271 (2012)
Delgado-Gonzalo, R., Uhlmann, V., Schmitter, D., Unser, M.: Snakes on a plane: a perfect snap for bioimage analysis. IEEE Signal Process. Mag. 32(1), 41–48 (2015)
Elefteriades, J.A.: Indications for aortic replacement. J. Thorac. Cardiovasc. Surg. 140(6 Suppl), S5 (2010)
Getreuer, P.: Chan–Vese Segmentation. Image Process. On Line 2, 214–224 (2012)
Getreuer, P.: A survey of Gaussian convolution algorithms. Image Process. On Line 3, 286–310 (2013)
Guerrero, J., Salcudean, S.E., McEwen, J.A., Masri, B.A., Nicolaou, S.: Real-time vessel segmentation and tracking for ultrasound imaging applications. IEEE Trans. Med. Imaging 26(8), 1079–1090 (2007)
Hough, P.V.C.: Method and means for recognizing complex patterns. US Patent 3,069,654, Dec 1962
Jacob, M., Blu, T., Unser, M.: Efficient energies and algorithms for parametric snakes. IEEE Trans. Image Process. 13, 1231–1244 (2004)
Kanatani, K., Sugaya, Y., Kanazawa, Y.: Ellipse fitting for computer vision: implementation and applications. Synthesis Lectures on Computer Vision 6(1), 1–141 (2016)
Levenverg, K.: A method for the solution of certain non-linear problems in least-squares. Q. Appl. Math. 2(2), 164–168 (1944)
Marquez-Neila, P., Baumela, L., Alvarez, L.: A morphological approach to curvature-based evolution of curves and surfaces. IEEE Trans. Pattern Anal. Mach. Intell. 36(1), 2–17 (2014)
Pao, D.C.W., Li, Hon F., Jayakumar, R., Jayakumar, R.: Shapes recognition using the straight line Hough transform: theory and generalization. IEEE Trans. Pattern Anal. Mach. Intell. 14(11), 1076–1089 (1992)
Paragios, N., Deriche, R.: Geodesic active regions and level set methods for motion estimation and tracking. Comput. Vis. Image Underst. 97(3), 259–282 (2005)
Porrill, J.: Fitting ellipses and predicting confidence envelopes using a bias corrected Kalman filter. Image Vis. Comput. 8(1), 37–41 (1990)
Ptrucean, V., Gurdjos, P., von Gioi, R.: A parameterless line segment and elliptical arc detector with enhanced ellipse fitting. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, Cordelia (eds.) Computer Vision ECCV 2012. Lecture Notes in Computer Science, pp. 572–585. Springer, Berlin (2012)
Otero, I.R., Delbracio, M.: Computing an exact Gaussian scale-space. Image Process. On Line 6, 8–26 (2016)
Sponton, H., Cardelino, J.: A review of classic edge detectors. Image Process. On Line 5, 90–123 (2015)
Tahoces, P.G., Alvarez, L., González, E., Cuenca, C., Trujillo, A., Santana-Cedrés, D., Esclarín, J., Gomez, L., Mazorra, L., Alemán-Flores, M., Carreira, J.M.: Automatic estimation of the aortic lumen geometry by ellipse tracking. Preprint http://www.ctim.es/papers/AutomaticEstimationAorticLumen.pdf
Thevenaz, P., Delgado-Gonzalo, R., Unser, M.: The ovuscule. IEEE Trans. Pattern Anal. Mach. Intell. 33(2), 382–393 (2011)
Tsuji, S., Matsumoto, F.: Detection of ellipses by a modified Hough transformation. IEEE Trans. Comput. 27(8), 777–781 (1978)
Vincze, M.: Robust tracking of ellipses at frame rate. Pattern Recognit. 34(2), 487–498 (2001)
Volz, S., Bruhn, A., Valgaerts, L., Zimmer, H.: Modeling temporal coherence for optical flow. In: 2011 International Conference on Computer Vision, pp. 1116–1123. Barcelona (2011)
Xie, Y., Ji, Q.: A new efficient ellipse detection method. In: 16th International Conference on Pattern Recognition, 2002. Proceedings, vol. 2, pp. 957–960 (2002)
Zimmer, H., Bruhn, A., Weickert, J.: Optic flow in harmony. Int. J. Comput. Vision 93(3), 368–388 (2011)
Acknowledgements
This research has partially been supported by the MIN- ECO Projects References TIN2016-76373-P (AEI/FED- ER, UE) and MTM2016-75339-P (AEI/FEDER, UE) (Ministerio de Economía y Competitividad, Spain).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Alvarez, L., González, E., Cuenca, C. et al. Ellipse Motion Estimation Using Parametric Snakes. J Math Imaging Vis 60, 1095–1110 (2018). https://doi.org/10.1007/s10851-018-0798-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-018-0798-9