Abstract
In magnetic particle imaging, the concentration of magnetic nanoparticles is imaged based on their nonlinear magnetization response to an applied magnetic field. Because of security limitations regarding the magnetic field, the field of view does not always cover the entire body being imaged. However, nanoparticles outside the field of view can also be excited by the applied magnetic field and therefore contribute to the measured signal. This leads to domain truncation artifacts, which can often be observed in the reconstructed particle concentrations. In this paper, a computational method for reducing such truncation artifacts is proposed. For this aim, an approximative statistical model for the modeling errors caused by domain truncation is constructed, and the reconstruction problem in magnetic particle imaging is solved in the Bayesian framework of inverse problems. Several numerical test examples illustrate the successful recovery from truncation artifacts.










Similar content being viewed by others
References
Ahlborg, M., Kaethner, C., Knopp, T., Szwargulski, P., Buzug, T.: Using data redundancy gained by patch overlaps to reduce truncation artifacts in magnetic particle imaging. Phys. Med. Biol. (2016). https://doi.org/10.1088/0031-9155/61/12/4583
Almeida, M.S.C., Figueiredo, M.A.T.: Deconvolving images with unknown boundaries using the alternating direction method of multipliers. IEEE Trans. Image Process. 22, 3074–3086 (2013)
Andrews, H.C.: Digital image restoration: a survey. IEEE Comput. 7, 36–45 (2005)
Bertero, M., Boccacci, P.: A simple method for the reduction of boundary effects in the richardson-lucy approach to image deconvolution. A&A 437(1), 369–374 (2005). https://doi.org/10.1051/0004-6361:20052717
Calvetti, D., Somersalo, E.: Statistical elimination of boundary artefacts in image deblurring. Inverse Probl. 21(5), 1697 (2005)
Chan, T.F., Yip, A.M., Park, F.E.: Simultaneous total variation image inpainting and blind deconvolution. Int. J. Imaging Syst. Technol. 15, 92–102 (2005)
Croft, L.R., Goodwill, P.W., Conolly, S.M.: Relaxation in x-space magnetic particle imaging. IEEE Trans. Med. Imaging 31(12), 2335–2342 (2012)
Demircan-Tureyen, E., Kamasak, M.E.: Directional Total Variation Based Image Deconvolution with Unknown Boundaries, pp. 473–484. Springer, Cham (2017)
Donatelli, M., Estatico, C., Martinelli, A., Serra-Capizzano, S.: Improved image deblurring with anti-reflective boundary conditions and re-blurring. Inverse Prob. 22(6), 2035 (2006). URL http://stacks.iop.org/0266-5611/22/i=6/a=008
Fan, Y.W.D., Nagy, J.G.: Synthetic boundary conditions for image deblurring. Linear Algebra Appl. 434(11), 2244–2268 (2011). https://doi.org/10.1016/j.laa.2009.12.021. Special Issue: Devoted to the 2nd NASC 08 Conference in Nanjing (NSC)
Gleich, B., Weizenecker, J.: Tomographic imaging using the nonlinear response of magnetic particles. Nature 435(7046), 1214–1217 (2005)
Goodwill, P., Conolly, S.M.: The X-space formulation of the magnetic particle imaging process: 1-D signal, resolution, bandwidth, SNR, SAR, and magnetostimulation. IEEE Trans. Med. Imaging 29, 1851–1859 (2010)
Grüttner, M., Sattel, T., Bringout, G., Graeser, M., Tenner, W., Wojtczyk, H., Buzug, T.: Truncation artifacts in magnetic particle imaging. In: Magnetic Particle Imaging (IWMPI), 2013 International Workshop on, pp. 1–1. IEEE (2013)
Grüttner, M., Sattel, T.F., Graeser, M., Wojtczyk, H., Bringout, G., Tenner, W., Buzug, T.M.: Enlarging the Field of View in Magnetic Particle Imaging—A Comparison, pp. 249–253. Springer Berlin Heidelberg, Berlin, Heidelberg (2012). https://doi.org/10.1007/978-3-642-24133-8-40
Haegele, J., Rahmer, J., Gleich, B., Borgert, J., Wojtczyk, H., Panagiotopoulos, N., Buzug, T., Barkhausen, J., Vogt, F.: Magnetic particle imaging: visualization of instruments for cardiovascular intervention. Radiology 265(3), 933–938 (2012)
Kaipio, J., Somersalo, E.: Statistical and Computational Inverse Problems, vol. 160. Springer (2005). https://doi.org/10.1007/b138659
Knopp, T., Biederer, S., Sattel, T.F., Buzug, T.M.: Singular value analysis for magnetic particle imaging. In: IEEE Nuclear Science Symposium Conference Record 2008, pp. 4525–4529 (2008)
Knopp, T., Biederer, S., Sattel, T.F., Rahmer, J., Weizenecker, J., Gleich, B., Borgert, J., Buzug, T.M.: 2D model-based reconstruction for magnetic particle imaging. Med. Phys. 37(2), 485–491 (2010)
Knopp, T., Buzug, T.: Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation. Springer, Berlin (2012)
Knopp, T., Rahmer, J., Sattel, T., Biederer, S., Weizenecker, J., Gleich, B., Borgert, J., Buzug, T.: Weighted iterative reconstruction for magnetic particle imaging. Phys. Med. Biol. 55(6), 1577 (2010)
Knopp, T., Them, K., Kaul, M., Gdaniec, N.: Joint reconstruction of non-overlapping magnetic particle imaging focus-field data. Phys. Med. Biol. 60(8), L15 (2015). https://doi.org/10.1088/0031-9155/60/8/L15
Kolehmainen, V., Tarvainen, T., Arridge, S.R., Kaipio, J.P.: Marginalization of uninteresting distributed parameters in inverse problems-application to diffuse optical tomography. Int. J Uncertain. Quantif 1(1) (2011)
Konkle, J., Goodwill, P., Hensley, D., Orendorff, R., Lustig, M., Conolly, S.: A convex formulation for magnetic particle imaging x-space reconstruction. PLoS ONE 10(10), e0140,137 (2015)
Lehikoinen, A., Finsterle, S., Voutilainen, A., Heikkinen, L., Vauhkonen, M., Kaipio, J.: Approximation errors and truncation of computational domains with application to geophysical tomography. Inverse Probl. Imaging 1(2), 371 (2007)
Lieberman, C., Willcox, K., Ghattas, O.: Parameter and state model reduction for large-scale statistical inverse problems. SIAM J. Sci. Comput. 32(5), 2523–2542 (2010)
Lipponen, A., Seppänen, A., Kaipio, J.: Electrical impedance tomography imaging with reduced-order model based on proper orthogonal decomposition. J. Electronic Imaging 22(2), 023008 (2013)
Liu, R., Jia, J.: Reducing boundary artifacts in image deconvolution. ICIP 2018, 505–508 (2008). https://doi.org/10.1109/ICIP.2008.4711802
März, T., Weinmann, A.: Model-based reconstruction for magnetic particle imaging in 2D and 3D. Inverse Probl. Imag. 10(4), 1087–1110 (2016)
Matakos, A., Ramani, S., Fessler, J.A.: Accelerated edge-preserving image restoration without boundary artifacts. IEEE Trans. Image Process. 22, 2019–2029 (2013)
Mozumder, M., Tarvainen, T., Kaipio, J.P., Arridge, S.R., Kolehmainen, V.: Compensation of modeling errors due to unknown domain boundary in diffuse optical tomography. JOSA A 31(8), 1847–1855 (2014)
Ng, M.K., Chan, R.H., Tang, W.C.: A fast algorithm for deblurring models with neumann boundary conditions. SIAM J. Sci. Comput. 21, 851–866 (1999)
Ng, M.K., Plemmons, R.J., Pimentel, F.: A new approach to constrained total least squares image restoration. Linear Algebra Appl. 316(1), 237–258 (2000). https://doi.org/10.1016/S0024-3795(00)00115-4. Special Issue: Conference celebrating the 60th birthday of Robert J. Plemmons
Nissinen, A., Heikkinen, L., Kolehmainen, V., Kaipio, J.: Compensation of errors due to discretization, domain truncation and unknown contact impedances in electrical impedance tomography. Meas. Sci. Technol. 20(10), 105504 (2009)
Nissinen, A., Kolehmainen, V.P., Kaipio, J.P.: Compensation of modelling errors due to unknown domain boundary in electrical impedance tomography. IEEE Trans. Med. Imaging 30(2), 231–242 (2011)
Prato, M., Cavicchioli, R., Zanni, L., Boccacci, P., Bertero, M.: Efficient deconvolution methods for astronomical imaging: algorithms and IDL-GPU codes. AAP 539, A133 (2012). https://doi.org/10.1051/0004-6361/201118681
Rahmer, J., Gleich, B., Bontus, C., Schmale, I.: Results on rapid 3D magnetic particle imaging with a large field of view. In: Proc. Intl. Soc. Mag. (2011)
Reeves, S.J.: Fast image restoration without boundary artifacts. Trans. Image Process. 14(10), 1448–53 (2005). https://doi.org/10.1109/TIP.2005.854474
Saritas, E.U., Goodwill, P.W., Zhang, G.Z., Conolly, S.M.: Magnetostimulation limits in magnetic particle imaging. IEEE Trans. Med. Imaging 32(9), 1600–1610 (2013)
Schmale, I., Gleich, B., Schmidt, J., Rahmer, J., Bontus, C., Eckart, R., David, B., Heinrich, M., Mende, O., Woywode, O.: Human pns and sar study in the frequency range from 24 to 162 khz. In: 2013 International Workshop on Magnetic Particle Imaging (IWMPI), pp. 1–1. IEEE (2013)
Simoes, M., Almeida, L.B., Bioucas-Dias, J., Chanussot, J.: A framework for fast image deconvolution with incomplete observations. IEEE Trans. Image Process. 25(11), 5266–5280 (2016). https://doi.org/10.1109/TIP.2016.2603920
Sorel, M.: Removing boundary artifacts for real-time iterated shrinkage deconvolution. IEEE Trans. Image Process. 21, 2329–2334 (2012)
Them, K., Salamon, J., Szwargulski, P., Sequeira, S., Kaul, M.G., Lange, C., Ittrich, H., Knopp, T.: Increasing the sensitivity for stem cell monitoring in system-function based magnetic particle imaging. Phys. Med. Biol. 61(9), 3279 (2016). URL http://stacks.iop.org/0031-9155/61/i=9/a=3279
Weber, A., Werner, F., Weizenecker, J., Buzug, T., Knopp, T.: Artifact free reconstruction with the system matrix approach by overscanning the field-free-point trajectory in magnetic particle imaging. Phys. Med. Biol. 61(2), 475 (2015)
Weizenecker, J., Borgert, J., Gleich, B.: A simulation study on the resolution and sensitivity of magnetic particle imaging. Phys. Med. Biol. 52, 6363–6374 (2007)
Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., Borgert, J.: Three-dimensional real-time in vivo magnetic particle imaging. Phys. Med. Biol. 54(5), L1 (2009)
Weizenecker, J., Gleich, B., Rahmer, J., Dahnke, H., Borgert, J.: Three-dimensional real-time in vivo magnetic particle imaging. Phys. Med. Biol. 54, L1–L10 (2009)
Acknowledgements
This work was supported by the Academy of Finland (projects 270174, 286964 and 303801, and the Finnish Center of Excellence of Inverse Problems Research 2012–2017).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Brandt, C., Seppänen, A. Recovery from Errors Due to Domain Truncation in Magnetic Particle Imaging: Approximation Error Modeling Approach. J Math Imaging Vis 60, 1196–1208 (2018). https://doi.org/10.1007/s10851-018-0807-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-018-0807-z