Abstract
A spatially varying Gamma mixture model prior is employed for tomographic image reconstruction, ensuring effective noise elimination and the preservation of region boundaries. We define a line process, modeling edges between image segments, through appropriate Markov random field smoothness terms which are based on the Student’s t-distribution. The proposed algorithm consists of two alternating steps. In the first step, the mixture model parameters are automatically estimated from the image. In the second step, the reconstructed image is estimated by optimizing the maximum-a-posteriori criterion using the one-step-late expectation–maximization and preconditioned conjugate gradient algorithms. Numerical experiments on various photon-limited image scenarios show that the proposed model outperforms the compared state-of-the-art reconstruction models.












Similar content being viewed by others
References
Ahmadi, S., Rajabi, H., Sardari, D., Babapour, F., Rahmatpour, M.: Attenuation correction in SPECT during image reconstruction using inverse Monte Carlo method a simulation study. Rom. Rep. Phys. 66, 200–211 (2014)
Arcadu, F., Nilchian, M., Studer, A., Stampanoni, M., Marone, F.: A forward regridding method with minimal oversampling for accurate and efficient iterative tomographic algorithms. IEEE Trans. Image Process. 25(3), 1207–1218 (2016)
Bishop, C.: Pattern Recognition and Machine Learning. Springer, Berlin (2006)
Brendel, B., Teuffenbach, M., No, P.B., Pfeiffer, F., Koehler, T.: Penalized maximum likelihood reconstruction for x-ray differential phase-contrast tomography. Med. Phys. 43(1), 188–194 (2016)
Browne, J.A., Pierro, A.R.D.: A row-action alternative to the EM algorithm for maximizing likelihood in emission tomography. IEEE Trans. Med. Imaging 15, 687–699 (1996)
Burger, M., Osher, S.: A guide to the TV zoo. In: Level Set and PDE Based Reconstruction Methods in Imaging, pp. 1–70. Springer (2013)
Chen, Y., Ma, J., Feng, Q., Luo, L., Shi, P., Chen, W.: Nonlocal prior Bayesian tomographic reconstruction. J. Math. Imaging Vis. 30, 133–146 (2008)
Estellers, V., Soatto, S.: Detecting occlusions as an inverse problem. J. Math. Imaging Vis. 54(2), 181–198 (2016)
Garrigos, G., Rosasco, L., Villa, S.: Iterative regularization via dual diagonal descent. J. Math. Imaging and Vis.(2017)
Golub, G.H., Hansen, P.C., O’Leary, D.P.: Tikhonov regularization and total least squares. SIAM J. Matrix Anal. Appl. 21(1), 185–194 (1999)
Goris, B., Van den Broek, W., Batenburg, K.J., Mezerji, H.H., Bals, S.: Electron tomography based on a total variation minimization reconstruction technique. Ultramicroscopy 113, 120–130 (2012)
Green, P.J.: Bayesian reconstructions from emission tomography data using a modified EM algorithm. IEEE Trans. Med. Imaging 9(1), 84–93 (1990)
Higdon, D.M., Bowsher, J.E., Johnson, V.E., Turkington, T.G., Gilland, D.R., Jaczszak, R.J.: Fully Bayesian estimation of Gibbs hyperparameters for emission computed tomography data. IEEE Trans. Med. Imaging 16(5), 516–526 (1997)
Hm, H.M.H., Larkin, B.S.: Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 13, 601–9 (1994)
Hsiao, I.T., Rangarajan, A., Gindi, G.: Joint MAP Bayesian tomographic reconstruction with a Gamma-mixture prior. IEEE Trans. Med. Imaging 11(12), 1466–1475 (2002)
Idier, J.: Bayesian Approach to Inverse Problems. Wiley, Hoboken (2013)
Kim, D., Ramani, S., Fessler, J.A.: Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction. IEEE Trans. Med. Imaging 34(1), 167–178 (2015)
Kotz, S., Balakrishnan, N., Johnson, N.: Continuous Multivariate Distributions. Wiley, New York (2000)
Lei, J., Liu, S.: An image reconstruction algorithm based on the regularized minimax estimation for electrical capacitance tomography. J. Math. Imaging Vis. 39(3), 269–291 (2011)
McLachlan, G.: Finite Mixture Models. Wiley, Hoboken (2000)
Mumcuoglu, E.U., Leahy, R., Cherry, S.R., Zhou, Z.: Fast gradient-based methods for Bayesian reconstruction of transmission and emission PET images. IEEE Trans. Med. Imaging 13(4), 687–701 (1994)
Nikou, C., Galatsanos, N., Likas, A.: A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans. Image Process. 16(4), 1121–1130 (2007)
Nikou, C., Likas, A., Galatsanos, N.: A Bayesian framework for image segmentation with spatially varying mixtures. IEEE Trans. Image Process. 19(9), 2278–2289 (2010)
Papadimitriou, K., Nikou, C.: Tomographic image reconstruction with a spatially varying Gaussian mixture prior. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 4002–4006 (2015)
Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60(1–4), 259–268 (1992)
Sabne, A., Wang, X., Kisner, S.J., Bouman, C.A., Raghunathan, A., Midkiff, S.P.: Model-based iterative CT image reconstruction on GPUs. In: Proceedings of the 22nd ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming, pp. 207–220 (2017)
Sanjay-Gopal, S., Hebert, T.: Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7(7), 1014–1028 (1998)
Sawatzky, A., Brune, C., Kösters, T., Wuebbeling, F., Burger, M.: EM-TV methods for inverse problems with Poisson noise. In: Level Set and PDE Based Reconstruction Methods in Imaging, pp. 71–142. Springer (2013)
Sfikas, G., Nikou, C., Galatsanos, N., Heinrich, C.: Majorization-minimization mixture model determination in image segmentation. In: 2011 IEEE conference on Computer Vision and Pattern Recognition (CVPR), pp. 2169–2176 (2011)
Sfikas, G., Nikou, C., Galatsanos, N.: Edge preserving spatially varying mixtures for image segmentation. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR). Anchorage, Alaska, USA (2008)
Sfikas, G., Nikou, C., Heinrich, C., Galatsanos, N.: On the optimization of probability vector MRFS in image segmentation. In: IEEE International Workshop on Machine Learning for Signal Processing (MLSP), pp. 1–6. IEEE (2009)
Sfikas, G., Nikou, C., Galatsanos, N., Heinrich, C.: Spatially varying mixtures incorporating line processes for image segmentation. J. Math. Imaging Vis. 36(2), 91–110 (2009)
Sfikas, G., Heinrich, C., Zallat, J., Nikou, C., Galatsanos, N.: Recovery of polarimetric stokes images by spatial mixture models. J. Opt. Soc. Am. A 28(3), 465–474 (2011)
Sheikh, H.R., Wang, Z.: Bovik, A.C., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)
Shepp, L., Vardi, Y.: Maximum likelihood reconstruction for emission tomography. IEEE Trans. Med. Imaging 1, 113–122 (1982)
Sidky, E.Y., Pan, X.: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization. Phys. Med. Biol. 53(17), 4777 (2008)
Wang, G., Qi, J.: Pet image reconstruction using kernel method. IEEE Trans. Med. Imaging 34(1), 61–71 (2015)
Wernick, M.N., Aarsvold, J.N.: Emission Tomography: the Fundamentals of PET and SPECT. Elsevier, Atlanta (2004)
Zhang, H., Wang, L., Yan, B., Li, L., Cai, A., Hu, G.: Constrained total generalized p-variation minimization for few-view X-ray computed tomography image reconstruction. PLoS ONE 11(2), 1–28 (2016)
Zhang, Y., Wang, Y., Zhang, W., Lin, F., Pu, Y., Zhou, J.: Statistical iterative reconstruction using adaptive fractional order regularization. Biomed. Opt. Express (OSA) 7(3), 1015–1029 (2016)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Papadimitriou, K., Sfikas, G. & Nikou, C. Tomographic Image Reconstruction with a Spatially Varying Gamma Mixture Prior. J Math Imaging Vis 60, 1355–1365 (2018). https://doi.org/10.1007/s10851-018-0817-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10851-018-0817-x