Skip to main content
Log in

Tomographic Reconstruction of the Beltrami Fields

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

We introduce and study a tomography method and have developed a numerical algorithm for the reconstruction of the linear Beltrami fields \(\nabla \times \mathbf{B}=\varkappa \mathbf{B}\) in a bounded domain of \(\mathbf{R}^3\) by using a known ray transform. This method is based on the expansion of a vector field over the special basis of vector functions. The results of computer simulation are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. See the remarks in Appendix A.16.

References

  1. Wiegelmann, T., Sakurai, T.: Solar force-free magnetic fields. Living Rev. Sol. Phys. 9, 5–40 (2012)

    Article  Google Scholar 

  2. Bellan, P.M.: Fundamentals of Plasma Physics. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  3. Woltjer, L.: A theorem on force-free magnetic fields. Proc. Nat. Acad. Sci. 44, 489–491 (1958)

    Article  MathSciNet  Google Scholar 

  4. Marsh, G.E.: Force-Free Magnetic Fields. Solution, Topology and Applications. World Scientific Publishing, Singapore (1996)

    Book  Google Scholar 

  5. Moffatt, H.K.: Magnetic Field Generation in Electrically Conducting Fluids. Cambridge University Press, London (1978)

    Google Scholar 

  6. McLaughlin, D.: Some notes on periodic Beltrami fields in Cartesian geometry. J. Math. Phys. 32, 797–804 (1991)

    Article  MathSciNet  Google Scholar 

  7. Constantin, P., Majda, A.: The Beltrami spectrum for incompressible fluid flows. Commun. Math. Phys. 115, 435–456 (1988)

    Article  MathSciNet  Google Scholar 

  8. Furth, H.P., Jardin, S.C., Montgomery, D.B.: Force-free coil principles applied to high-temperature superconducting materials. IEEE Trans. Magn. 24, 1467–1468 (1998)

    Article  Google Scholar 

  9. Lakhtakia, A.: Beltrami Fields in Chiral Media. World Scientific Publishing, Singapore (1994)

    Book  Google Scholar 

  10. Howard, J.: Vector tomography applications in plasma diagnostics. Plasma Phys. Control Fusion 38, 489–503 (1996)

    Article  Google Scholar 

  11. Balandin, A.L., Ono, Y.: Tomographic determination of plasma velocity with the use of ion Doppler spectroscopy. Eur. Phys. J. D 17, 337–344 (2001)

    Article  Google Scholar 

  12. Winters, K.B., Rouseff, D.: Tomographic reconstruction of stratified fluid flow. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 40, 26–33 (1993)

    Article  Google Scholar 

  13. Norton, S.J.: Tomographic reconstruction of 2-D vector fields: application to flow imaging. J. Geophys. 97, 161–168 (1987)

    Article  Google Scholar 

  14. Schuster, Th: An efficient mollifier method for three-dimensional vector tomography: convergence analysis and implementation. Inverse Prob. 17, 739–766 (2001)

    Article  MathSciNet  Google Scholar 

  15. Sparr, G., Strahlen, K., Lindstrom, K., Persson, H.W.: Doppler tomography for vector field. Inverse Probl. 11, 1051–1061 (1995)

    Article  MathSciNet  Google Scholar 

  16. Osman, N.F., Prince, J.L.: 3D vector tomography on bounded domains. Inverse Probl. 14, 185–196 (1998)

    Article  Google Scholar 

  17. Sharafutdinov, V.: Integral Geometry of Tensor Fields. VSP, Utrecht (1994)

    Book  Google Scholar 

  18. Natterer, F., Wübbeling, F.: Mathematical Methods in Image Reconstruction. SIAM, Philadelphia (2001)

    Book  Google Scholar 

  19. Chandrasekhar, S., Kendall, P.C.: On force-free magnetic fields. Astrophys. J. 126, 457–460 (1957)

    Article  MathSciNet  Google Scholar 

  20. Chandrasekhar, S.: On force-free magnetic fields. Proc. Natl. Acad. Sci. USA 42, 1–5 (1956)

    Article  MathSciNet  Google Scholar 

  21. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Oxford University Press, New York (1961)

    MATH  Google Scholar 

  22. Hansen, W.W.: A new type of expansion in radiation problem. Phys. Rev. 47, 139–143 (1935)

    Article  Google Scholar 

  23. Morse, P.M., Feshbach, H.: Methods of Theoretical Physics, vol. 1, 2. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  24. Freeden, W., Gervens, T., Schreiner, M.: Constructive Approximation on the Sphere with Applications to Geomathematics. Clarendon Press, Oxford (1998)

    MATH  Google Scholar 

  25. Stratton, J.A.: Electromagnetic Theory. McGraw-Hill, New York (1941)

    MATH  Google Scholar 

  26. Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, Berlin (1992)

    Book  Google Scholar 

  27. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Dover Publications, New York (1970)

    MATH  Google Scholar 

  28. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge University Press, New York (1945)

    Google Scholar 

  29. Balandin, A.L., Murata, Y., Ono, Y.: Radial velocity profile reconstruction by Doppler spectroscopy measurements. Eur. Phys. J. D 27, 125–130 (2003)

    Article  Google Scholar 

  30. Kawamori, E., Sumikawa, T., Ono, Y., Balandin, A.L.: Measurement of global instability of compact torus by three-dimensional tomography. Rev. Sci. Instrum. 77, 093503-1–093503-3 (2006)

    Article  Google Scholar 

  31. Varshalovich, D.A., Moskalev, A.N., Khersonskii, V.K.: Quantum Theory of Angular Momentum. World Scientific Publishing, Singapore (1988)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Balandin.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A

Appendix A

1. Vector spherical harmonics and Hansen’s vectors.

The set of vector spherical harmonics used in this paper is introduced in [22,23,24].

$$\begin{aligned}&{} \mathbf{P}_l^m({\hat{\mathbf{r}}})={\hat{\mathbf{r}}} Y_{lm}({\hat{\mathbf{r}}}), \end{aligned}$$
(A.1)
$$\begin{aligned}&{} \mathbf{C}_l^m({\hat{\mathbf{r}}})=\frac{-1}{\sqrt{l(l+1)}}({\hat{\mathbf{r}}} \times \nabla _{{\hat{\mathbf{r}}}})Y_{l m}({\hat{\mathbf{r}}})\nonumber \\&\quad = \frac{1}{\sqrt{l(l+1)}} \Bigr ( \frac{1}{\sin \theta }\frac{\partial }{\partial \varphi }{\hat{\varvec{\theta }}}- \frac{\partial }{\partial \theta }\hat{\varvec{\varphi }} \Bigl )Y_{lm}({\hat{\mathbf{r}}}), \end{aligned}$$
(A.2)
$$\begin{aligned}&{} \mathbf{B}_l^m({\hat{\mathbf{r}}})=\frac{1}{\sqrt{l(l+1)}} \nabla _{{\hat{\mathbf{r}}}}Y_{l m}({\hat{\mathbf{r}}})\nonumber \\&\quad = \frac{1}{\sqrt{l(l+1)}} \Bigr ( \frac{\partial }{\partial \theta }{\hat{\varvec{\theta }}}+ \frac{1}{\sin \theta }\frac{\partial }{\partial \varphi }\hat{\varvec{\varphi }} \Bigl )Y_{lm}({\hat{\mathbf{r}}}), \end{aligned}$$
(A.3)

where \(Y_{lm}({\hat{\mathbf{r}}})\) are scalar spherical harmonics, and operators \(\nabla _\mathbf{r}, \nabla _{{\hat{\mathbf{r}}}}\) have the form

$$\begin{aligned} \nabla _\mathbf{r} = {\hat{\mathbf{r}}}\frac{\partial }{\partial r} + \frac{1}{r}\nabla _{{\hat{\mathbf{r}}}}, \ \ \nabla _{{\hat{\mathbf{r}}}}= {\hat{\varvec{\theta }}}\frac{\partial }{\partial \theta }+\frac{\hat{\varvec{\varphi }}}{\sin \theta }\frac{\partial }{\partial \varphi }. \end{aligned}$$

The vector spherical harmonics are pointwise perpendicular,

$$\begin{aligned} \mathbf{P}_l^m({\hat{\mathbf{r}}}) \cdot \mathbf{C}_l^m({\hat{\mathbf{r}}})= \mathbf{C}_l^m({\hat{\mathbf{r}}}) \cdot \mathbf{B}_l^m({\hat{\mathbf{r}}})= \mathbf{B}_l^m({\hat{\mathbf{r}}}) \cdot \mathbf{P}_l^m({\hat{\mathbf{r}}})=0, \end{aligned}$$

and they satisfy the orthogonality conditions

$$\begin{aligned}&\int \limits _{S^2}{} \mathbf{P}_l^m({\hat{\mathbf{r}}}) \cdot [\mathbf{P}_{l^\prime }^{m^\prime }({\hat{\mathbf{r}}})]^*\hbox {d}\varOmega ({\hat{\mathbf{r}}})= \int \limits _{S^2}{} \mathbf{C}_l^m({\hat{\mathbf{r}}}) \cdot [\mathbf{C}_{l^\prime }^{m^\prime }({\hat{\mathbf{r}}})]^*\hbox {d}\varOmega ({\hat{\mathbf{r}}}) \nonumber \\&\quad =\int \limits _{S^2}{} \mathbf{B}_l^m({\hat{\mathbf{r}}}) \cdot [\mathbf{B}_{l^\prime }^{m^\prime }({\hat{\mathbf{r}}})]^*\hbox {d}\varOmega ({\hat{\mathbf{r}}}) =\frac{4\pi }{2l+1}\frac{(l+|m|)!}{(l-|m|)!}\delta _{ll^\prime }\delta _{mm^\prime },\nonumber \\ \end{aligned}$$
(A.4)

for any \(l=0,1,\ldots \) and \(|m|\leqslant l\), \(*\) means complex conjugation.

There is the following relation of \(\mathbf{P}_l^m, \mathbf{B}_l^m, \mathbf{C}_l^m \) to some other vector spherical harmonics \(\mathbf{Y}_{lm}^{(-1)}, \mathbf{Y}_{lm}^{(0)}, \mathbf{Y}_{lm}^{(1)}\) introduced in [31], by \(\mathbf{P}_l^m = \mathbf{Y}_{lm}^{(-1)}\), \(\mathbf{C}_l^m =-i \mathbf{Y}_{lm}^{(0)}\), \(\mathbf{B}_l^m = \mathbf{Y}_{lm}^{(1)}\). Under rotation of the frame of reference defined by Euler angles, the vectors \(\mathbf{P}_l^m, \mathbf{C}_l^m, \mathbf{B}_l^m\) are transformed in the same manner as vectors \(\mathbf{Y}_{lm}^{(-1)}\), \(\mathbf{Y}_{lm}^{(0)}\), \(\mathbf{Y}_{lm}^{(1)}\).

$$\begin{aligned} \mathbf{Y}_{lm^{\prime }}^{(\lambda )}({\hat{\mathbf{r}}}^{\prime })=\sum \limits _{m=-l}^l \mathbf{Y}_{lm}^{(\lambda )}({\hat{\mathbf{r}}}) D_{mm^{\prime }}^l(\alpha ,\beta ,\gamma ), \quad \lambda =(-1,0,1). \end{aligned}$$
(A.5)

The set of vector spherical harmonics forms a complete and orthonormal set of functions in \((L^2(S^2))^3\).

Hansen’s vectors are defined as in [22, 25, 26]

$$\begin{aligned}&{} \mathbf{M}_l^m(\mathbf{r})= \nabla _\mathbf{r}\times [\mathbf{r}\, z_l(\varkappa r) Y_{lm}({\hat{\mathbf{r}}})]\nonumber \\&\quad = \sqrt{l(l+1)}\, z_l(\varkappa r)\,\mathbf{C}_l^m({\hat{\mathbf{r}}}), \end{aligned}$$
(A.6)
$$\begin{aligned}&{} \mathbf{N}_l^m(\mathbf{r})=\frac{1}{\varkappa }\nabla _\mathbf{r}\times \mathbf{M}_l^m(\mathbf{r})\nonumber \\&\quad =\frac{1}{\varkappa }\nabla _\mathbf{r}\times \nabla _\mathbf{r}\times [\mathbf{r}\, z_l(\varkappa r) Y_{lm}({\hat{\mathbf{r}}})]\nonumber \\&\quad =l(l+1)\frac{z_l(\varkappa r)}{\varkappa r }\, \mathbf{P}_l^m({\hat{\mathbf{r}}})\nonumber \\&\qquad + \sqrt{l(l+1)}\frac{1}{\varkappa r}\Bigl [\frac{\hbox {d}}{\hbox {d} \varkappa r}\bigl (\varkappa r \ z_l(\varkappa r)\bigr )\Bigr ]\mathbf{B}_l^m({\hat{\mathbf{r}}}) \end{aligned}$$
(A.7)
$$\begin{aligned}&{} \mathbf{L}_l^m(\mathbf{r})= \frac{1}{\varkappa }\nabla _\mathbf{r}[ z_l(\varkappa r)Y_{lm}({\hat{\mathbf{r}}})] \nonumber \\&\quad = \sqrt{l(l+1)}\frac{z_l(\varkappa r)}{\varkappa r }\, \mathbf{B}_l^m({\hat{\mathbf{r}}})+\frac{\hbox {d} z_l(\varkappa r)}{\hbox {d}(\varkappa r)} \,\mathbf{P}_l^m({\hat{\mathbf{r}}}), \end{aligned}$$
(A.8)

where \(z_l(\varkappa r)= j_l(\varkappa r), y_l(\varkappa r), h_l^{(1)}(\varkappa r), h_l^{(2)}(\varkappa r)\) designate any spherical Bessel function of the first, second and third kinds, respectively.

The definitions (A.6)–(A.8) imply that \(M_{lm}\) and \(N_{lm}\) have no divergence, and also \(L_{lm}\) have no curl,

$$\begin{aligned} \nabla \cdot \mathbf{M}_l^m = 0, \quad \nabla \cdot \mathbf{N}_l^m = 0,\quad \nabla \times \mathbf{L}_l^m = 0. \end{aligned}$$
(A.9)

During the rotation, they are transformed in the same way as the vector spherical harmonics (A.5).

An inner product for vectors \(\mathbf{M}_l^m(\varkappa ,\mathbf{r})\) and \(\mathbf{N}_l^m(\varkappa ,\mathbf{r})\) is defined as follows

$$\begin{aligned}&\int \limits _0^{R}\!r^2 dr\! \int \limits \mathbf{M}_l^m(\varkappa ,\mathbf{r})\cdot [\mathbf{M}_l^m(\varkappa ,\mathbf{r})]^*d\varOmega (\hat{\mathbf{r}}) = N_{lm} I_l, \end{aligned}$$
(A.10)
$$\begin{aligned}&\int \limits _0^R r^2 \hbox {d}r \int \mathbf{N}_l^m(\varkappa ,\mathbf{r})\cdot [\mathbf{N}_l^m(\varkappa ,\mathbf{r})]^*\hbox {d}\varOmega ({\hat{\mathbf{r}}})\nonumber \\&\quad = N_{lm} \bigl [(l+1)I_{l-1} +l I_{l+1}\bigr ], \end{aligned}$$
(A.11)

where \(*\) means complex conjugation, \(N_{lm}=\displaystyle \frac{4\pi l(l+1)}{2l+1}\frac{(l+m)!}{(l-m)!}\), \(I_l\) is equals [28, p.134]

$$\begin{aligned} I_l=\int \limits _0^R [j_l(\varkappa r)]^2 r^2 \hbox {d}r=\frac{R^3}{2}\bigl ([j_l(\varkappa R)]^2 - j_{l-1}(\varkappa R)j_{l+1}(\varkappa R)\bigr ). \end{aligned}$$
(A.12)

Furthermore, \(\mathbf{M},\mathbf{N}\) and \(\mathbf{L}\) are mutually orthogonal; that is,

$$\begin{aligned}&\int \limits _0^{2\pi }\hbox {d}\phi \int \limits _0^{\pi } \sin (\theta )\hbox {d}\theta \ \mathbf{M}_l^m(\varkappa ,\mathbf{r})\cdot [\mathbf{N}_{l_1}^{m_1}(\varkappa ,\mathbf{r})]^*=0, \end{aligned}$$
(A.13)
$$\begin{aligned}&\int \limits _0^{2\pi }\hbox {d}\phi \int \limits _0^{\pi } \sin (\theta )\hbox {d}\theta \ \mathbf{M}_l^m(\varkappa ,\mathbf{r})\cdot [\mathbf{L}_{l_1}^{m_1}(\varkappa ,\mathbf{r})]^*=0, \end{aligned}$$
(A.14)

Obviously, \(\mathbf{M}_l^m, \mathbf{N}_l^m\) may be used to represent solenoidal fields, and \(\mathbf{L}_l^m\) to represent a potential field. Usually, in problems related to plasma diagnostics, both the velocity and the magnetic fields satisfy the solenoidal condition.

2. An auxiliary formula for numerical evaluation of\(\mathbf{M}_l^m, \mathbf{N}_l^m\)vector wave functions.

From the definitions (A.2), (A.3) and (A.6), (A.7) it can be seen that to evaluate the vectors \(\mathbf{M}_l^m, \mathbf{N}_l^m\), some caution is required for calculation the following quantities.

$$\begin{aligned}&\displaystyle \frac{\partial Y_{lm}}{\partial \theta }=\mathop {\mathrm e}\nolimits ^{im\phi }\frac{\hbox {d} P_l^m(\cos \theta )}{\hbox {d}\theta }, \quad \nonumber \\&\quad \frac{1}{\sin \theta }\frac{\partial Y_{lm}}{\partial \phi }=i m \mathop {\mathrm e}\nolimits ^{im\phi }\frac{P_l^m(\cos \theta )}{\sin \theta } \end{aligned}$$
(A.15)

The following recurrence formulas can be used for this purpose [25, p. 402]

$$\begin{aligned}&\frac{\hbox {d}}{\hbox {d} \theta }P_l^m(\cos \theta )\\&\quad =\frac{1}{2} \bigl [(l-m+1)(l+m)P_l^{m-1}(\cos \theta )-P_l^{m+1}(\cos \theta )\bigr ] \end{aligned}$$

For evaluation of the \(\theta \)-component of \(Y_{lm}^{(0)}\) and \(\phi \)-component of \(Y_{lm}^{(1)}\) at the points \(\theta =0,\pi \), the following formula can be used [25, p. 401]

$$\begin{aligned} \frac{P_l^m(\cos \theta )}{\sin \theta }|_{\theta =0,\pi }= & {} \frac{\cos \theta }{2 m} \bigl [(n-m+1)(n+m)P_l^{m-1}(\cos \theta )\\&\quad + P_l^{m+1}(\cos \theta )\bigl ],\\ \frac{P_l^m(\cos \theta )}{\sin \theta }= & {} \frac{-1}{2m}\bigl [(l-m+2)(l-m+1) P_{l+1}^{m-1}(\cos \theta )\\&\quad +P_{l+1}^{m+1}(\cos \theta )\bigr ], m > 0. \end{aligned}$$

For the quantities \( \displaystyle \frac{1}{\varkappa r}\frac{\hbox {d}}{\hbox {d}\varkappa r}(\varkappa r z_l(\varkappa r))\), the following recurrence formula is used [27, p. 439(10.1.20)]

$$\begin{aligned} \frac{\hbox {d}z_l(\varkappa r)}{\hbox {d}(\varkappa r)}=\frac{1}{(2l+1)}\bigl [l z_{l-1}(\varkappa r)-(l+1) z_{l+1}(\varkappa r)\bigr ]. \end{aligned}$$

3. Remarks to Lemma1.

Let the following operators be defined: \({\hat{\mathbf{L}}}_\mathbf{r}=(\mathbf{r} \times \nabla _\mathbf{r})\) and \({\hat{\mathbf{L}}}_\mathbf{k}=(\mathbf{k} \times \nabla _\mathbf{k})\). Then the relations below hold.

$$\begin{aligned}&{\hat{\mathbf{L}}}_\mathbf{r} \mathop {\mathrm e}\nolimits ^{i\mathbf{k}\cdot \mathbf{r}}=(\mathbf{r} \times \nabla _\mathbf{r}) \mathop {\mathrm e}\nolimits ^{i\mathbf{k}\cdot \mathbf{r}}=(\mathbf{r} \times i\mathbf{k})\mathop {\mathrm e}\nolimits ^{i\mathbf{k}\cdot \mathbf{r}}= -i(\mathbf{k} \times \mathbf{r})\mathop {\mathrm e}\nolimits ^{i\mathbf{k}\cdot \mathbf{r}} \nonumber \\&\quad =-i[\mathbf{k} \times (-i\nabla _\mathbf{k})]\mathop {\mathrm e}\nolimits ^{i\mathbf{k}\cdot \mathbf{r}}= -(\mathbf{k} \times \nabla _\mathbf{k})\mathop {\mathrm e}\nolimits ^{i\mathbf{k}\cdot \mathbf{r}}=- {\hat{\mathbf{L}}}_\mathbf{k} \mathop {\mathrm e}\nolimits ^{i\mathbf{k}\cdot \mathbf{r}}. \nonumber \\&{\hat{\mathbf{L}}}_\mathbf{k}\int \mathop {\mathrm e}\nolimits ^{i\mathbf{k}\cdot \mathbf{r}}\varPsi (\mathbf{r})\hbox {d}\mathbf{r}= \int {\hat{\mathbf{L}}}_\mathbf{k}\mathop {\mathrm e}\nolimits ^{i\mathbf{k}\cdot \mathbf{r}}\varPsi (\mathbf{r})\hbox {d}{} \mathbf{r}\nonumber \\&= -\int {\hat{\mathbf{L}}}_\mathbf{r}\mathop {\mathrm e}\nolimits ^{i\mathbf{k}\cdot \mathbf{r}}\varPsi (\mathbf{r})\hbox {d}{} \mathbf{r}.\!\!\!\nonumber \\ \end{aligned}$$
(A.16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balandin, A.L. Tomographic Reconstruction of the Beltrami Fields. J Math Imaging Vis 62, 1–9 (2020). https://doi.org/10.1007/s10851-019-00900-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-019-00900-4

Keywords

Navigation