Skip to main content
Log in

Fractal Dimension Estimation for Color Texture Images

  • Published:
Journal of Mathematical Imaging and Vision Aims and scope Submit manuscript

Abstract

As an important feature of image texture, fractal dimension is widely used to index, segment or classify texture images. Previously, many methods have been proposed to estimate fractal dimension. However, most of them are for binary and gray-scale images. Only a few of them are for color images. In this paper, by extending the differential box-counting approach to five-dimensional Euclidean hyper-space, we present a new robust and simple algorithm to estimate fractal dimension for color texture images. By the differential box-counting method, a real empty box not covering any pixel even with ideal resolution is also counted as a box having pixels, resulting in errors of computations. This problem is eliminated by our method based on fractal Brownian surface model. Our experiments demonstrate that our algorithm is able to capture the complexity of color natures, and outperforms other methods in terms of color texture complexity ranking and discrimination, robustness and computational complexity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Allain, C., Cloitre, M.: Characterizing the lacunarity of random and deterministic fractal sets. Phys. Rev. A 44, 3552–3558 (1991)

    Article  MathSciNet  Google Scholar 

  2. Backes, A.R., Casanova, D., Bruno, O.: Color texture analysis based on fractal descriptors. Pattern Recognit. 45, 1984–1992 (2012)

    Article  Google Scholar 

  3. Backes, A.R., Casanova, D., Bruno, O.M.: Plant leaf identification based on volumetric fractal dimension. Int. J. Pattern Recognit. Artif. Intell. 23, 1145–1160 (2009)

    Article  Google Scholar 

  4. Block, A., von Bloh, W., Schellnhuber, H.: Efficient box-counting determination of generalized fractal dimension. Phys. Rev. A 42, 1869–1874 (1990)

    Article  MathSciNet  Google Scholar 

  5. Buczkowsk, S., Kyriacos, S., Nekka, F., Cartlier, L.: The modified box-counting method: analysis of some characteristic parameters. Pattern Recognit. 4, 411–418 (1998)

    Article  Google Scholar 

  6. Chen, W., Yuan, S., Hsieh, C.: Two algorithms to estimate fractal dimension of gray-level images. Opt. Eng. 42, 2452–2464 (2003)

    Article  Google Scholar 

  7. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 2nd edn. Willey Publishing Inc, New York (2003)

    Book  Google Scholar 

  8. Florindo, J.B., Bruno, O.M.: Fractal descriptors in the Fourier domain applied to color texture analysis. Chaos 21, 043112, 10 pages (2011)

    Article  Google Scholar 

  9. Florindo, J.B., Bruno, O.M.: Fractal descriptors of texture images based on the triangular prism dimension. J. Math. Imaging Vis. 61, 140–159 (2019)

    Article  MathSciNet  Google Scholar 

  10. Florindo, J.B., Castro, M.D., Bruno, O.M.: Enhancing multiscale fractal descriptors using functional data analysis. Int. J. Bifurc. Chaos 20, 3443–3460 (2010)

    Article  Google Scholar 

  11. Foroutan-pour, K., Dutilleul, P., Smith, D.L.: Advances in the implementation of the box-counting method of fractal dimension estimation. Appl. Math. Comput. 105, 195–210 (1999)

    MATH  Google Scholar 

  12. Gangepain, J., Roques-Carmes, C.: Fractal approach to two dimensional and three dimensional surface roughness. Wear 109, 119–126 (1986)

    Article  Google Scholar 

  13. Häfner, M., Tamaki, T., Tanaka, S., Uhl, A., Wimmer, G.: Local fractal dimension based approaches for colonic polyp classification. Med. Image Anal. 26, 92–107 (2015)

    Article  Google Scholar 

  14. Ivanovici, M., Richard, N.: Fractal dimension of color fractal images. IEEE Trans. Image Process. 20, 227–235 (2011)

    Article  MathSciNet  Google Scholar 

  15. Kaye, B.H.: A Random Walk Through Fractal Dimension. VCH Publishers, New York (1989)

    MATH  Google Scholar 

  16. Keller, J., Crownover, R., Chen, S.: Texture description and segmentation through fractal geometry. Comput. Vis. Graph. Image Process. 45, 150–166 (1989)

    Article  Google Scholar 

  17. Li, J., Du, Q., Sun, C.: An improved box-counting method for image fractal dimension estimation. Pattern Recognit. 42, 2460–2469 (2009)

    Article  Google Scholar 

  18. Liu, S.C., Chang, S.: Dimension estimation of discrete-time fractional brownian motion with applications to image texture classification. IEEE Trans. Image Process. 6, 1176–1184 (1997)

    Article  Google Scholar 

  19. Liu, Y., Chen, L., Wang, H., Jiang, L., Zhang, Y., Zhao, J., Wang, D., Zhao, Y., Song, Y.: An improved differential box-counting method to estimate fractal dimensions of gray-level images. J. Vis. Commun. Image Represent. 25, 1102–1111 (2014)

    Article  Google Scholar 

  20. Luo, R.C., Potlapalli, H.: Fractal based classification of natural textures. IEEE Trans. Ind. Electron. 45, 142–150 (1998)

    Article  Google Scholar 

  21. Mandelbrot, B.B.: Gaussian Self-Affinity and Fractals. Springer, New York (2002)

    MATH  Google Scholar 

  22. Peitgen, H.O., Juergens, H., Saupe, D.: Chaos and Fractals: New Frontiers of Science, 2nd edn. Springer, Berlin (1992)

    Book  Google Scholar 

  23. Peitgen, H.O., Saupe, D.: The Science of Fractal Images. Springer, New York (1988)

    Google Scholar 

  24. Peleg, S., Naor, J., Hartley, R., Avnir, D.: Multiresolution texture analysis and classification. IEEE Trans. Pattern Anal. Mach. Intell. 4, 518–523 (1984)

    Article  Google Scholar 

  25. Pentland, A.P.: Fractal based description of nature scenes. IEEE Trans. Pattern Anal. Mach. Intell. 6, 661–674 (1984)

    Article  Google Scholar 

  26. Picard, R., Graczyk, C., Mann, S., Wachman, J., Picard, L., Campbell, L.: The vision texture database (2016). http://vismod.media.mit.edu/pub/VisTex/VisTex.tar.gz

  27. Ribas, L.C., Gonca̧lves, D.N., Margarido, J.P.O., Gonçalves, W.N.: Fractal dimension of maximum response filters applied to texture analysis. Pattern Recognit. Lett. 65, 116–123 (2015)

    Article  Google Scholar 

  28. Sarker, N., Chaudhuri, B.B.: An efficient differential box-counting approach to compute fractal dimension of image. IEEE Trans. Syst. Man Cybern. A Syst. Hum. 24, 115–120 (1994)

    Article  Google Scholar 

  29. Voss, R.F.: Random fractals: characterization and measurement. In: Pynn, R., Skjeltorp, A. (eds.) Scaling Phenomena in Disordered Systems, pp. 1–12. Plenum, New York (1985)

    Google Scholar 

  30. Yu, L., Zhang, D., Wang, K., Yang, W.: Coarse iris classification using box-counting to estimate fractal dimensions. Pattern Recognit. 38, 1791–1798 (2005)

    Article  Google Scholar 

  31. Zhou, Z., Zang, Y., Li, Y.: Rice plant-hopper infestation detection and classification algorithms based on fractal dimension values and fuzzy c-means. Math. Comput. Model. 58, 701–709 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

The author is very grateful to the editor and the anonymous referees for their careful reading and valuable suggestions, which have notably improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yurong Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by the Humanities and Social Sciences Foundation of Ministry of Education of China under Grant No. 15YJAZH037 and the Fundamental Research Funds for the Central Universities under Grant No. JBK1902030.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y. Fractal Dimension Estimation for Color Texture Images. J Math Imaging Vis 62, 37–53 (2020). https://doi.org/10.1007/s10851-019-00912-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10851-019-00912-0

Keywords

Navigation